No Arabic abstract
We theoretically investigate the preparation of mid-infrared (MIR) spectrally-uncorrelated biphotons from a spontaneous parametric down-conversion process using doped LN crystals, including MgO doped LN, ZnO doped LN, and In2O3 doped ZnLN with doping ratio from 0 to 7 mol%. The tilt angle of the phase-matching function and the corresponding poling period are calculated under type-II, type-I, and type-0 phase-matching conditions. We also calculate the thermal properties of the doped LN crystals and their performance in Hong-Ou-Mandel interference. It is found that the doping ratio has a substantial impact on the group-velocity-matching (GVM) wavelengths. Especially, the GVM2 wavelength of co-doped InZnLN crystal has a tunable range of 678.7 nm, which is much broader than the tunable range of less than 100 nm achieved by the conventional method of adjusting the temperature. It can be concluded that the doping ratio can be utilized as a degree of freedom to manipulate the biphoton state. The spectrally uncorrelated biphotons can be used to prepare pure single-photon source and entangled photon source, which may have promising applications for quantum-enhanced sensing, imaging, and communications at the MIR range.
Spectrally intrinsically uncorrelated biphoton states generated from nonlinear crystals are very important but rare resources for quantum photonics and quantum information applications. Previously, such biphoton states were generated from several kinds of crystals, however, their wavelength ranges and nonlinear efficiencies were still limited for various applications. In order to explore new crystal for wider wavelength range and higher nonlinear efficiency, here we theoretically study the generation of spectrally uncorrelated biphoton states from 14 crystals in the `BBO family, including BBO, CLBO, KABO, KBBF, RBBF, CBBF, BABF, BiBO, LBO, CBO, LRB4, LCB, YCOB, and GdCOB. They satisfy three kinds of group-velocity matching condition from near-infrared to telecom wavelengths. Furthermore, heralded single photons can be generated with a purity as high as 0.98, which is achieved without any narrow filtering. The indistinguishability of photons from independent sources is examined by the Hong-Ou-Mandel interference, which results in a visibility of 98% also without any further filtering, i.e., photons from different heralded single-photon sources are highly indistinguishable. Our study may provide single-photon sources with good performance for quantum information processing at near-infrared and telecom wavelengths.
Spectrally uncorrelated biphoton state generated from the spontaneous nonlinear optical process is an important resource for quantum information. Currently such spectrally uncorrelated biphoton state can only be prepared from limited kinds of nonlinear media, thus limiting their wavelengths. In order to explore wider wavelength range, here we theoretically study the generation of spectrally uncorrelated biphoton state from 14 isomorphs of potassium dihydrogen phosphate (KDP) crystal. We find that 11 crystals from the `KDP family still maintain similar nonlinear optical properties of KDP, such as KDP, DKDP, ADP, DADP, ADA, DADA, RDA, DRDA, RDP, DRDP and KDA, which satisfy 3 kinds of the group-velocity matching conditions for spectrally uncorrelated biphoton state generation from near-infrared to telecom wavelengths. Based on the uncorrelated biphoton state, we investigate the generation of heralded pure-state single photon by detecting one member of the biphoton state to herald the output of the other. The purity of the heralded single photon is as high as 0.98 without using a narrow-band filter; the Hong-Ou-Mandel interference from independent sources can also achieve a visibility of 98%. This study may provide more and better single-photon sources for quantum information processing at near-infrared and telecom wavelengths.
We theoretically investigated spectrally uncorrelated biphotons generated in a counter-propagating spontaneous parametric downconversion (CP-SPDC) from periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals. By numerical calculation, it was found that the five crystals from the KTP family can be used to generate heralded single photons with high spectral purity and wide tunability. Under the type-0 phase-matching condition, the purity at 1550 nm was between 0.91 and 0.92, and the purity can be maintained over 0.90 from 1500 nm to 2000 nm wavelength. Under the type-II phase-matching condition, the purity at 1550 nm was 0.96, 0.97, 0.97, 0.98, and 0.98 for PPKTP, PPRTP, PPKTA, PPRTA, and PPCTA, respectively; furthermore, the purity can be kept over 0.96 for more than 600 nm wavelength range. We also simulated the Hong-Ou-Mandel interference between independent photon sources for PPRTP crystals at 1550 nm, and interference visibility was 92% (97%) under type-0 (type-II) phase-matching condition. This study may provide spectrally pure narrowband single-photon sources for quantum memories and quantum networks at telecom wavelengths.
We utilized the all-copropagating scheme, which maintains the phase-match condition, in the spontaneous four-wave mixing (SFWM) process to generate biphotons from a hot atomic vapor. The scheme enables our biphotons not only to surpass those in the previous works of hot-atom SFWM, but also to compete with the biphotons that are generated by either the cold-atom SFWM or the cavity-assisted spontaneous parametric down conversion. The biphoton linewidth in this work is tunable for an order of magnitude. As we tuned the linewidth to 610 kHz, the maximum two-photon correlation function, $g_{s,as}^{(2)}$, of the biphotons is 42. This $g_{s,as}^{(2)}$ violates the Cauchy-Schwartz inequality for classical light by 440 folds, and demonstrates that the biphotons have a high purity. The generation rate per linewidth of the 610-kHz biphoton source is 1,500 pairs/(s$cdot$MHz), which is the best result of all the sub-MHz biphoton sources in the literature. By increasing the pump power by 16 folds, we further enhanced the generation rate per linewidth to 2.3$times$10$^4$ pairs/(s$cdot$MHz), while the maximum $g_{s,as}^{(2)}$ became 6.7. In addition, we are able to tune the linewidth down to 290$pm$20 kHz. This is the narrowest linewidth to date, among all the various kinds of single-mode biphotons.
Periodically poled lithium niobate (PPLN) waveguide is a powerful platform for efficient wavelength conversion. Conventional PPLN converters however typically require long device lengths and high pump powers due to the limited nonlinear interaction strength. Here we use a nanostructured PPLN waveguides to demonstrate an ultrahigh normalized efficiency of 2600%/W-cm$^2$ for second-harmonic generation of 1.5-$mu$m radiation, more than 20 times higher than that in state-of-the-art diffused waveguides. This is achieved by a combination of sub-wavelength optical confinement and high-fidelity periodic poling at a first-order poling period of 4 $mu$m. Our highly integrated PPLN waveguides are promising for future chip-scale integration of classical and quantum photonic systems.