No Arabic abstract
SCALES (Santa Cruz Array of Lenslets for Exoplanet Spectroscopy) is a 2-5 micron high-contrast lenslet integral-field spectrograph (IFS) driven by exoplanet characterization science requirements and will operate at W. M. Keck Observatory. Its fully cryogenic optical train uses a custom silicon lenslet array, selectable coronagraphs, and dispersive prisms to carry out integral field spectroscopy over a 2.2 arcsec field of view at Keck with low ($<300$) spectral resolution. A small, dedicated section of the lenslet array feeds an image slicer module that allows for medium spectral resolution ($5000-10 000$), which has not been available at the diffraction limit with a coronagraphic instrument before. Unlike previous IFS exoplanet instruments, SCALES is capable of characterizing cold exoplanet and brown dwarf atmospheres ($<600$ K) at bandpasses where these bodies emit most of their radiation while capturing relevant molecular spectral features.
The Santa Cruz Extreme AO Lab (SEAL) is a new visible-wavelength testbed designed to advance the state of the art in wavefront control for high contrast imaging on large, segmented, ground-based telescopes. SEAL provides multiple options for simulating atmospheric turbulence, including rotating phase plates and a custom Meadowlark spatial light modulator that delivers phase offsets of up to 6pi at 635nm. A 37-segment IrisAO deformable mirror (DM) simulates the W. M. Keck Observatory segmented primary mirror. The adaptive optics system consists of a woofer/tweeter deformable mirror system (a 97-actuator ALPAO DM and 1024-actuator Boston Micromachines MEMs DM, respectively), and four wavefront sensor arms: 1) a high-speed Shack-Hartmann WFS, 2) a reflective pyramid WFS, designed as a prototype for the ShaneAO system at Lick Observatory, 3) a vector-Zernike WFS, and 4) a Fast Atmospheric Self Coherent Camera Technique (FAST) demonstration arm, consisting of a custom focal plane mask and high-speed sCMOS detector. Finally, science arms preliminarily include a classical Lyot-style coronagraph as well as FAST (which doubles as a WFS and science camera). SEALs real time control system is based on the Compute and Control for Adaptive optics (CACAO) package, and is designed to support the efficient transfer of software between SEAL and the Keck II AO system. In this paper, we present an overview of the design and first light performance of SEAL.
We describe the preliminary design of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and of the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the CEAs space weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is acquiring progressively the know-how to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms to contribute to the efforts of the solar-terrestrial physics community to address the main unanswered questions on how our nearby Star works.
Current and future high contrast imaging instruments aim to detect exoplanets at closer orbital separations, lower masses, and/or older ages than their predecessors, with the eventual goal of directly detecting terrestrial-mass habitable-zone exoplanets. However, continually evolving speckles in the coronagraphic science image still limit state-of-the-art ground-based exoplanet imaging instruments to contrasts at least two orders of magnitude worse than what is needed to achieve this goal. For ground-based adaptive optics (AO) instruments it remains challenging for most speckle suppression techniques to attenuate both the dynamic atmospheric and quasi-static instrumental speckles. We have proposed a focal plane wavefront sensing and control algorithm to address this challenge, called the Fast Atmospheric Self-coherent camera (SCC) Technique (FAST), which enables the SCC to operate down to millisecond timescales even when only a few photons are detected per speckle. Here we present preliminary experimental results of FAST on the Santa Cruz Extreme AO Laboratory (SEAL) testbed. In particular, we illustrate the benefit second stage AO-based focal plane wavefront control, demonstrating FAST closed-loop compensation of evolving residual atmospheric turbulence on millisecond-timescales.
The first light instrument on the Thirty Meter Telescope (TMT) project will be the InfraRed Imaging Spectrograph (IRIS). IRIS will be mounted on a bottom port of the facility AO instrument NFIRAOS. IRIS will report guiding information to the NFIRAOS through the On-Instrument Wavefront Sensor (OIWFS) that is part of IRIS. This will be in a self-contained compartment of IRIS and will provide three deployable wavefront sensor probe arms. This entire unit will be rotated to provide field de-rotation. Currently in our preliminary design stage our efforts have included: prototyping of the probe arm to determine the accuracy of this critical component, handling cart design and reviewing different types of glass for the atmospheric dispersion.
High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138x138 spatial elements over a 2.07 arcsec x 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (lambda = 1.15 - 2.5 microns) and will feature two spectral resolution modes of R = 18 (low-res mode) and R = 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.