Do you want to publish a course? Click here

First Experimental Results of the Fast Atmospheric Self-coherent Camera Technique on the Santa cruz Extreme Adaptive optics Laboratory Testbed: Demonstration of High Speed Focal Plane Wavefront Control of Residual Atmospheric Speckles

112   0   0.0 ( 0 )
 Added by Benjamin Gerard
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Current and future high contrast imaging instruments aim to detect exoplanets at closer orbital separations, lower masses, and/or older ages than their predecessors, with the eventual goal of directly detecting terrestrial-mass habitable-zone exoplanets. However, continually evolving speckles in the coronagraphic science image still limit state-of-the-art ground-based exoplanet imaging instruments to contrasts at least two orders of magnitude worse than what is needed to achieve this goal. For ground-based adaptive optics (AO) instruments it remains challenging for most speckle suppression techniques to attenuate both the dynamic atmospheric and quasi-static instrumental speckles. We have proposed a focal plane wavefront sensing and control algorithm to address this challenge, called the Fast Atmospheric Self-coherent camera (SCC) Technique (FAST), which enables the SCC to operate down to millisecond timescales even when only a few photons are detected per speckle. Here we present preliminary experimental results of FAST on the Santa Cruz Extreme AO Laboratory (SEAL) testbed. In particular, we illustrate the benefit second stage AO-based focal plane wavefront control, demonstrating FAST closed-loop compensation of evolving residual atmospheric turbulence on millisecond-timescales.



rate research

Read More

High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recently, optimized instruments like SPHERE and GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (~1au) but, because of uncalibrated aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>1e7). This requires a focal plane wavefront sensor. Our team proposed the SCC, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. First, we recall the principle of the SCC and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. We demonstrate in the laboratory that the MRSCC camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm. We reach a performance that is close to the chromatic limitations of our bench: contrast of 4.5e-8 between 5 and 17 lambda/D. The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.
The Santa Cruz Extreme AO Lab (SEAL) is a new visible-wavelength testbed designed to advance the state of the art in wavefront control for high contrast imaging on large, segmented, ground-based telescopes. SEAL provides multiple options for simulating atmospheric turbulence, including rotating phase plates and a custom Meadowlark spatial light modulator that delivers phase offsets of up to 6pi at 635nm. A 37-segment IrisAO deformable mirror (DM) simulates the W. M. Keck Observatory segmented primary mirror. The adaptive optics system consists of a woofer/tweeter deformable mirror system (a 97-actuator ALPAO DM and 1024-actuator Boston Micromachines MEMs DM, respectively), and four wavefront sensor arms: 1) a high-speed Shack-Hartmann WFS, 2) a reflective pyramid WFS, designed as a prototype for the ShaneAO system at Lick Observatory, 3) a vector-Zernike WFS, and 4) a Fast Atmospheric Self Coherent Camera Technique (FAST) demonstration arm, consisting of a custom focal plane mask and high-speed sCMOS detector. Finally, science arms preliminarily include a classical Lyot-style coronagraph as well as FAST (which doubles as a WFS and science camera). SEALs real time control system is based on the Compute and Control for Adaptive optics (CACAO) package, and is designed to support the efficient transfer of software between SEAL and the Keck II AO system. In this paper, we present an overview of the design and first light performance of SEAL.
High-contrast imaging observations are fundamentally limited by the spatially and temporally correlated noise source called speckles. Suppression of speckle noise is the key goal of wavefront control and adaptive optics (AO), coronagraphy, and a host of post-processing techniques. Speckles average at a rate set by the statistical speckle lifetime, and speckle-limited integration time in long exposures is directly proportional to this lifetime. As progress continues in post-coronagraph wavefront control, residual atmospheric speckles will become the limiting noise source in high-contrast imaging, so a complete understanding of their statistical behavior is crucial to optimizing high-contrast imaging instruments. Here we present a novel power spectral density (PSD) method for calculating the lifetime, and develop a semi-analytic method for predicting intensity PSDs behind a coronagraph. Considering a frozen-flow turbulence model, we analyze the residual atmosphere speckle lifetimes in a MagAO-X-like AO system as well as 25--39 m giant segmented mirror telescope (GSMT) scale systems. We find that standard AO control shortens atmospheric speckle lifetime from ~130 ms to ~50 ms, and predictive control will further shorten the lifetime to ~20 ms on 6.5 m MagAO-X. We find that speckle lifetimes vary with diameter, wind speed, seeing, and location within the AO control region. On bright stars lifetimes remain within a rough range of ~20 ms to ~100 ms. Due to control system dynamics there are no simple scaling laws which apply across a wide range of system characteristics. Finally, we use these results to argue that telemetry-based post-processing should enable ground-based telescopes to achieve the photon-noise limit in high-contrast imaging.
We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control (speckle nulling). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 10^6--10^7 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAOs science capabilities.
Fewer than 1% of all exoplanets detected to date have been characterized on the basis of spectroscopic observations of their atmosphere. Unlike indirect methods, high-contrast imaging offers access to atmospheric signatures by separating the light of a faint off-axis source from that of its parent star. Forthcoming space facilities, such as WFIRST/LUVOIR/HabEX, are expected to use coronagraphic instruments capable of imaging and spectroscopy in order to understand the physical properties of remote worlds. The primary technological challenge that drives the design of these instruments involves the precision control of wavefront phase and amplitude errors. Several FPWS and control techniques have been proposed and demonstrated in laboratory to achieve the required accuracy. However, these techniques have never been tested and compared under the same laboratory conditions. This paper compares two of these techniques in a closed loop in visible light: the pair-wise (PW) associated with electric field conjugation (EFC) and self-coherent camera (SCC). We first ran numerical simulations to optimize PW wavefront sensing and to predict the performance of a coronagraphic instrument with PW associated to EFC wavefront control, assuming modeling errors for both PW and EFC. Then we implemented the techniques on a laboratory testbed. We introduced known aberrations into the system and compared the wavefront sensing using both PW and SCC. The speckle intensity in the coronagraphic image was then minimized using PW+EFC and SCC independently. We demonstrate that both SCC and PW+EFC can generate a dark hole in space-like conditions in a few iterations. Both techniques reach the current limitation of our laboratory bench and provide coronagraphic contrast levels of 5e-9 in a narrow spectral band (<0.25% bandwidth)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا