Do you want to publish a course? Click here

Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D Edge Alignment

77   0   0.0 ( 0 )
 Added by Yi Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The present paper reviews the classical problem of free-form curve registration and applies it to an efficient RGBD visual odometry system called Canny-VO, as it efficiently tracks all Canny edge features extracted from the images. Two replacements for the distance transformation commonly used in edge registration are proposed: Approximate Nearest Neighbour Fields and Oriented Nearest Neighbour Fields. 3D2D edge alignment benefits from these alternative formulations in terms of both efficiency and accuracy. It removes the need for the more computationally demanding paradigms of datato-model registration, bilinear interpolation, and sub-gradient computation. To ensure robustness of the system in the presence of outliers and sensor noise, the registration is formulated as a maximum a posteriori problem, and the resulting weighted least squares objective is solved by the iteratively re-weighted least squares method. A variety of robust weight functions are investigated and the optimal choice is made based on the statistics of the residual errors. Efficiency is furthermore boosted by an adaptively sampled definition of the nearest neighbour fields. Extensive evaluations on public SLAM benchmark sequences demonstrate state-of-the-art performance and an advantage over classical Euclidean distance fields.



rate research

Read More

Motion blur is one of the major challenges remaining for visual odometry methods. In low-light conditions where longer exposure times are necessary, motion blur can appear even for relatively slow camera motions. In this paper we present a novel hybrid visual odometry pipeline with direct approach that explicitly models and estimates the cameras local trajectory within the exposure time. This allows us to actively compensate for any motion blur that occurs due to the camera motion. In addition, we also contribute a novel benchmarking dataset for motion blur aware visual odometry. In experiments we show that by directly modeling the image formation process, we are able to improve robustness of the visual odometry, while keeping comparable accuracy as that for images without motion blur.
Detection of moving objects is an essential capability in dealing with dynamic environments. Most moving object detection algorithms have been designed for color images without depth. For robotic navigation where real-time RGB-D data is often readily available, utilization of the depth information would be beneficial for obstacle recognition. Here, we propose a simple moving object detection algorithm that uses RGB-D images. The proposed algorithm does not require estimating a background model. Instead, it uses an occlusion model which enables us to estimate the camera pose on a background confused with moving objects that dominate the scene. The proposed algorithm allows to separate the moving object detection and visual odometry (VO) so that an arbitrary robust VO method can be employed in a dynamic situation with a combination of moving object detection, whereas other VO algorithms for a dynamic environment are inseparable. In this paper, we use dense visual odometry (DVO) as a VO method with a bi-square regression weight. Experimental results show the segmentation accuracy and the performance improvement of DVO in the situations. We validate our algorithm in public datasets and our dataset which also publicly accessible.
We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO) that takes motion constraints into account. A key aspect of our approach is to use an appropriate motion model that can help existing self-supervised monocular VO (SSM-VO) algorithms to overcome issues related to the local minima within their self-supervised loss functions. The motion model is expressed with a neural network named PPnet. It is trained to coarsely predict the next pose of the camera and the uncertainty of this prediction. Our self-supervised approach combines the original loss and the motion loss, which is the weighted difference between the prediction and the generated ego-motion. Taking two existing SSM-VO systems as our baseline, we evaluate our MotionHint algorithm on the standard KITTI benchmark. Experimental results show that our MotionHint algorithm can be easily applied to existing open-sourced state-of-the-art SSM-VO systems to greatly improve the performance by reducing the resulting ATE by up to 28.73%.
Recent learning-based LiDAR odometry methods have demonstrated their competitiveness. However, most methods still face two substantial challenges: 1) the 2D projection representation of LiDAR data cannot effectively encode 3D structures from the point clouds; 2) the needs for a large amount of labeled data for training limit the application scope of these methods. In this paper, we propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties. Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns. To suit our network to self-supervised learning, we design several novel loss functions that utilize the inherent properties of LiDAR point clouds. Moreover, an uncertainty-aware mechanism is incorporated in the loss functions to alleviate the interference of moving objects/noises. We evaluate our methods performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay. Our method outperforms state-of-the-art unsupervised methods by 27%/32% in terms of translational/rotational errors on the KITTI dataset and also performs well on the Apollo-SouthBay dataset. By including more unlabelled training data, our method can further improve performance comparable to the supervised methods.
We present ClusterVO, a stereo Visual Odometry which simultaneously clusters and estimates the motion of both ego and surrounding rigid clusters/objects. Unlike previous solutions relying on batch input or imposing priors on scene structure or dynamic object models, ClusterVO is online, general and thus can be used in various scenarios including indoor scene understanding and autonomous driving. At the core of our system lies a multi-level probabilistic association mechanism and a heterogeneous Conditional Random Field (CRF) clustering approach combining semantic, spatial and motion information to jointly infer cluster segmentations online for every frame. The poses of camera and dynamic objects are instantly solved through a sliding-window optimization. Our system is evaluated on Oxford Multimotion and KITTI dataset both quantitatively and qualitatively, reaching comparable results to state-of-the-art solutions on both odometry and dynamic trajectory recovery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا