Non-linear Compton scattering of ultra-relativistic electrons traversing high-intensity laser pulses generates also hard photons. These photon high-energy tails are considered for parameters in reach at the forthcoming experiments LUXE and E-320. We consider the invariant differential cross sections $d sigma / du$ between the IR and UV regions and analyze the impact of the laser polarization and find q-deformed exponential shapes. (The variable $u$ is the light-cone momentum-transfer from initial electron to final photon.) Optical laser pulses of various durations are compared with the monochromatic laser beam model which uncovers the laser intensity parameter in the range $xi = 1 cdots 10$. Some supplementary information is provided for the azimuthal final-electron/photon distributions and the photon energy-differential cross sections.
A version for intense $gamma $-ray radiation based on the multiphoton scattering of strong laser radiation on relativistic particle beam channeled in a crystal is proposed. The scheme is considered when the incident laser beam and charged paricles beam are counter-propagating and the laser radiation is resonant to the energy levels of transversal motion of channeled particles.
The collision of ultra-relativistic electron beams with intense short laser pulses makes possible to study QED in the high-intensity regime. Present day high-intensity lasers mostly operate with short pulse durations of several tens of femtoseconds, i.e. only a few optical cycles. A profound theoretical understanding of short pulse effects is important not only for studying fundamental aspects of high-intensity laser matter interaction, but also for applications as novel X- and gamma-ray radiation sources. In this article we give a brief overview of the theory of high-intensity QED with focus on effects due to the short pulse duration. The non-linear spectral broadening in non-linear Compton scattering due to the short pulse duration and its compensation is discussed.
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma-gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi^2 (first order correction). All this is necessary for optimization of the conversion region at photon colliders and study of physics processes where a sharp edge of the luminosity spectrum and monochromaticity of collisions are important.
Non-standard neutrino-nucleon interaction is formulated and explored within the energy range of quasi-elastic scattering. In particular, the study focuses on the neutral-current elastic (anti)neutrino scattering off nucleons described by the exotic reactions $ u_alpha ({bar u}_alpha) + n rightarrow u_beta ({bar u}_beta) + n $ and $ u_alpha ({bar u}_alpha) + p rightarrow u_beta ({bar u}_beta) + p$, which provide corrections to the dominant Standard Model processes. In this context, it is shown that the required exotic nucleon form factors may have a significant impact on the relevant cross sections. Besides cross sections, the event rate is expected to be rather sensitive to the magnitude of the lepton-flavour violating parameters resulting in an excess of events. The overlap of non-standard interactions and strange quark contributions, in the region of few GeV neutrino energies, is also examined. The formalism is applied for the case of the relevant neutrino-nucleon scattering experiments (LSND, MiniBooNE, etc.) and motivates the notion that such facilities have high potential to probe NSI.
We performed a photon generation experiment by laser-Compton scattering at the KEK-ATF, aiming to develop a Compton based polarized positron source for linear colliders. In the experiment, laser pulses with a 357 MHz repetition rate were accumulated and their power was enhanced by up to 250 times in the Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while maintaining the laser pulse accumulation in the cavity. As a result, we observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which corresponds to a yield of 10^8 photons in a second.