Do you want to publish a course? Click here

First-year ion-acoustic wave observations in the solar wind by the RPW/TDS instrument onboard Solar Orbiter

132   0   0.0 ( 0 )
 Added by David Pisa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electric field measurements of the Time Domain Sampler (TDS) receiver, part of the Radio and Plasma Waves (RPW) instrument on board Solar Orbiter, often exhibit very intense broadband wave emissions at frequencies below 20~kHz in the spacecraft frame. In this paper, we present a year-long study of electrostatic fluctuations observed in the solar wind at an interval of heliocentric distances from 0.5 to 1~AU. The RPW/TDS observations provide a nearly continuous data set for a statistical study of intense waves below the local plasma frequency. The on-board and continuously collected and processed properties of waveform snapshots allow for the mapping plasma waves at frequencies between 200~Hz and 20~kHz. We used the triggered waveform snapshots and a Doppler-shifted solution of the dispersion relation for wave mode identification in order to carry out a detailed spectral and polarization analysis. Electrostatic ion-acoustic waves are the common wave emissions observed between the local electron and proton plasma frequency in the soler wind. The occurrence rate of ion-acoustic waves peaks around perihelion at distances of 0.5~AU and decreases with increasing distances, with only a few waves detected per day at 0.9~AU. Waves are more likely to be observed when the local proton moments and magnetic field are highly variable. A more detailed analysis of more than 10000 triggered waveform snapshots shows the mean wave frequency at about 3 kHz and wave amplitude about 2.5 mV/m. The wave amplitude varies as 1/R^(1.38) with the heliocentric distance. The relative phase distribution between two components of the E-field shows a mostly linear wave polarization. Electric field fluctuations are closely aligned with the directions of the ambient field lines. Only a small number (3%) of ion-acoustic waves are observed at larger magnetic discontinuities.



rate research

Read More

We use the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study fields and density fluctuations in the solar wind observed by Solar Orbiter during the first perihelion encounter ($sim$0.5~AU away from the Sun). In particular we use the polarization of the wave magnetic field, the phase between the compressible magnetic field and density fluctuations and the compressibility ratio (the ratio of the normalized density fluctuations to the normalized compressible fluctuations of B) to characterize the observed waves and turbulence. We find that the density fluctuations are out-of-phase with the compressible component of magnetic fluctuations for intervals of turbulence, while they are in phase for the circular-polarized waves around the proton cyclotron frequency. We analyze in detail two specific events with simultaneous presence of left- and right-handed waves at different frequencies. We compare observed wave properties to a prediction of the three-fluid (electrons, protons and alphas) model. We find a limit on the observed wavenumbers, $10^{-6} < k < 7 times 10^{-6}$~m$^{-1}$, which corresponds to wavelength $7 times 10^6 >lambda > 10^6$~m. We conclude that most likely both the left- and right-handed waves correspond to the low-wavenumber part (close to the cut-off at $Omega_{cmathrm{He}++}$) proton-band electromagnetic ion cyclotron (left-handed wave in the plasma frame confined to the frequency range $Omega_{cmathrm{He}++} < omega < Omega_{cmathrm{H}+}$) waves propagating in the outwards and inwards directions respectively. The fact that both wave polarizations are observed at the same time and the identified wave mode has a low group velocity suggests that the double-banded events occur in the source regions of the waves.
Solar Orbiter was launched on February 10, 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in-situ sensing. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure the low frequency DC electric fields. In this paper we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular we investigate the possibility of using Solar Orbiters DC electric and magnetic field data to estimate the solar wind speed. We use deHoffmann-Teller (HT) analysis based on measurements of the electric and magnetic fields to find the velocity of solar wind current sheets which minimizes a single component of the electric field. By comparing the HT velocity to proton velocity measured by the Proton and Alpha particle Sensor (PAS) we develop a simple model for the effective antenna length, $L_text{eff}$ of the E-field probes. We then use the HT method to estimate the speed of the solar wind. Using the HT method, we find that the observed variations in $E_y$ are often in excellent agreement with the variations in the magnetic field. The magnitude of $E_y$, however, is uncertain due to the fact that the $L_text{eff}$ depends on the plasma environment. We derive an empirical model relating $L_text{eff}$ to the Debye length, which we can use to improve the estimate of $E_y$ and consequently the estimated solar wind speed. The low frequency electric field provided by RPW is of high quality. Using deHoffmann-Teller analysis, Solar Orbiters magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data is unavailable.
Aims: We present the first measurements of the solar-wind angular-momentum (AM) flux recorded by the Solar Orbiter spacecraft. Our aim is the validation of these measurements to support future studies of the Suns AM loss. Methods: We combine 60-minute averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser (SWA) and the magnetometer (MAG) onboard Solar Orbiter. We calculate the AM flux per solid-angle element using data from the first orbit of the missions cruise phase during 2020. We separate the contributions from protons and from magnetic stresses to the total AM flux. Results: The AM flux varies significantly over time. The particle contribution typically dominates over the magnetic-field contribution during our measurement interval. The total AM flux shows the largest variation and is typically anti-correlated with the radial solar-wind speed. We identify a compression region, potentially associated with a co-rotating interaction region or a coronal mass ejection, that leads to a significant localised increase in the AM flux, yet without a significant increase in the AM per unit mass. We repeat our analysis using the density estimate from the Radio and Plasma Waves (RPW) instrument. Using this independent method, we find a decrease in the peaks of positive AM flux but otherwise consistent results. Conclusions: Our results largely agree with previous measurements of the solar-wind AM flux in terms of amplitude, variability, and dependence on radial solar-wind bulk speed. Our analysis highlights the potential for future, more detailed, studies of the solar winds AM and its other large-scale properties with data from Solar Orbiter. We emphasise the need to study the radial evolution and latitudinal dependence of the AM flux in combination with data from Parker Solar Probe and assets at heliocentric distances of 1 au and beyond.
Impacts of dust grains on spacecraft are known to produce typical impulsive signals in the voltage waveform recorded at the terminals of electric antennas. Such signals are routinely detected by the Time Domain Sampler (TDS) system of the Radio and Plasma Waves (RPW) instrument aboard Solar Orbiter. We investigate the capabilities of RPW in terms of interplanetary dust studies and present the first analysis of dust impacts recorded by this instrument. We discuss previously developed models of voltage pulses generation after a dust impact onto a spacecraft and present the relevant technical parameters for Solar Orbiter RPW as a dust detector. Then we present the statistical analysis of the dust impacts recorded by RPW/TDS from April 20th, 2020 to February 27th, 2021 between 0.5 AU and 1 AU. The study shows that the dust population studied presents a radial velocity component directed outward from the Sun, the order of magnitude of which can be roughly estimated as $v_{r, dust} simeq 50$ km.$s^{-1}$. This is consistent with the flux of impactors being dominated by $beta$-meteoroids. We estimate the cumulative flux of these grains at 1 AU to be roughly $F_beta simeq 8times 10^{-5} $ m$^{-2}$s$^{-1}$, for particles of radius $r gtrsim 100$ nm. The power law index $delta$ of the cumulative mass flux of the impactors is evaluated by two differents methods (direct observations of voltage pulses and indirect effect on the impact rate dependency on the impact speed). Both methods give a result $delta simeq 0.3-0.4$. Solar Orbiter RPW proves to be a suitable instrument for interplanetary dust studies. These first results are promising for the continuation of the mission, in particular for the in-situ study of the dust cloud outside the ecliptic plane, which Solar Orbiter will be the first spacecraft to explore.
131 - L. Yu , S. Y. Huang , Z. G. Yuan 2020
We present a statistical analysis for the characteristics and radial evolution of linear magnetic holes (LMHs) in the solar wind from 0.166 to 0.82 AU using Parker Solar Probe observations of the first two orbits. It is found that the LMHs mainly have a duration less than 25 s and the depth is in the range from 0.25 to 0.7. The durations slightly increase and the depths become slightly deeper with the increasing heliocentric distance. Both the plasma temperature and the density for about 50% of all events inside the holes are higher than the ones surrounding the holes. The average occurrence rate is 8.7 events/day, much higher than that of the previous observations. The occurrence rate of the LMHs has no clear variation with the heliocentric distance (only a slight decreasing trend with the increasing heliocentric distance), and has several enhancements around ~0.525 AU and ~0.775 AU, implying that there may be new locally generated LMHs. All events are segmented into three parts (i.e., 0.27, 0.49 and 0.71 AU) to investigate the geometry evolution of the linear magnetic holes. The results show that the geometry of LMHs are prolonged both across and along the magnetic field direction from the Sun to the Earth, while the scales across the field extend a little faster than along the field. The present study could help us to understand the evolution and formation mechanism of the LMHs in the solar wind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا