Do you want to publish a course? Click here

Theoretical Analyses of Multi-Objective Evolutionary Algorithms on Multi-Modal Objectives

130   0   0.0 ( 0 )
 Added by Weijie Zheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Previous theory work on multi-objective evolutionary algorithms considers mostly easy problems that are composed of unimodal objectives. This paper takes a first step towards a deeper understanding of how evolutionary algorithms solve multi-modal multi-objective problems. We propose the OneJumpZeroJump problem, a bi-objective problem whose single objectives are isomorphic to the classic jump functions benchmark. We prove that the simple evolutionary multi-objective optimizer (SEMO) cannot compute the full Pareto front. In contrast, for all problem sizes~$n$ and all jump sizes $k in [4..frac n2 - 1]$, the global SEMO (GSEMO) covers the Pareto front in $Theta((n-2k)n^{k})$ iterations in expectation. To improve the performance, we combine the GSEMO with two approaches, a heavy-tailed mutation operator and a stagnation detection strategy, that showed advantages in single-objective multi-modal problems. Runtime improvements of asymptotic order at least $k^{Omega(k)}$ are shown for both strategies. Our experiments verify the {substantial} runtime gains already for moderate problem sizes. Overall, these results show that the ideas recently developed for single-objective evolutionary algorithms can be effectively employed also in multi-objective optimization.



rate research

Read More

Recently, more and more works have proposed to drive evolutionary algorithms using machine learning models.Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models.Since it usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality.To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs).At each generation of the proposed algorithm, the parent solutions are first classified into emph{real} and emph{fake} samples to train the GANs; then the offspring solutions are sampled by the trained GANs.Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data.The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables.Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
264 - Jinjin Xu , Yaochu Jin , Wenli Du 2021
Data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization is always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and is subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.
This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system - a cascade-based operation scenario. For this, we propose a new mathematical modelling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.
88 - Ke Li , Renzhi Chen 2021
Multi-objective optimization problems are ubiquitous in real-world science, engineering and design optimization problems. It is not uncommon that the objective functions are as a black box, the evaluation of which usually involve time-consuming and/or costly physical experiments. Data-driven evolutionary optimization can be used to search for a set of non-dominated trade-off solutions, where the expensive objective functions are approximated as a surrogate model. In this paper, we propose a framework for implementing batched data-driven evolutionary multi-objective optimization. It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner. In particular, it has two unique components: 1) based on the Karush-Kuhn-Tucker conditions, a manifold interpolation approach that explores more diversified solutions with a convergence guarantee along the manifold of the approximated Pareto-optimal set; and 2) a batch recommendation approach that reduces the computational time of the optimization process by evaluating multiple samples at a time in parallel. Experiments on 136 benchmark test problem instances with irregular Pareto-optimal front shapes against six state-of-the-art surrogate-assisted EMO algorithms fully demonstrate the effectiveness and superiority of our proposed framework. In particular, our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
Dynamic multi-objective optimization problems (DMOPs) remain a challenge to be settled, because of conflicting objective functions change over time. In recent years, transfer learning has been proven to be a kind of effective approach in solving DMOPs. In this paper, a novel transfer learning based dynamic multi-objective optimization algorithm (DMOA) is proposed called regression transfer learning prediction based DMOA (RTLP-DMOA). The algorithm aims to generate an excellent initial population to accelerate the evolutionary process and improve the evolutionary performance in solving DMOPs. When an environmental change is detected, a regression transfer learning prediction model is constructed by reusing the historical population, which can predict objective values. Then, with the assistance of this prediction model, some high-quality solutions with better predicted objective values are selected as the initial population, which can improve the performance of the evolutionary process. We compare the proposed algorithm with three state-of-the-art algorithms on benchmark functions. Experimental results indicate that the proposed algorithm can significantly enhance the performance of static multi-objective optimization algorithms and is competitive in convergence and diversity.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا