Do you want to publish a course? Click here

A Federated Data-Driven Evolutionary Algorithm for Expensive Multi/Many-objective Optimization

265   0   0.0 ( 0 )
 Added by Jinjin Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization is always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and is subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.



rate research

Read More

93 - Jinjin Xu , Yaochu Jin , Wenli Du 2021
Data-driven evolutionary optimization has witnessed great success in solving complex real-world optimization problems. However, existing data-driven optimization algorithms require that all data are centrally stored, which is not always practical and may be vulnerable to privacy leakage and security threats if the data must be collected from different devices. To address the above issue, this paper proposes a federated data-driven evolutionary optimization framework that is able to perform data driven optimization when the data is distributed on multiple devices. On the basis of federated learning, a sorted model aggregation method is developed for aggregating local surrogates based on radial-basis-function networks. In addition, a federated surrogate management strategy is suggested by designing an acquisition function that takes into account the information of both the global and local surrogate models. Empirical studies on a set of widely used benchmark functions in the presence of various data distributions demonstrate the effectiveness of the proposed framework.
Recently, more and more works have proposed to drive evolutionary algorithms using machine learning models.Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models.Since it usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality.To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs).At each generation of the proposed algorithm, the parent solutions are first classified into emph{real} and emph{fake} samples to train the GANs; then the offspring solutions are sampled by the trained GANs.Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data.The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables.Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
155 - Ke Li , Renzhi Chen , Guangtao Fu 2017
When solving constrained multi-objective optimization problems, an important issue is how to balance convergence, diversity and feasibility simultaneously. To address this issue, this paper proposes a parameter-free constraint handling technique, two-archive evolutionary algorithm, for constrained multi-objective optimization. It maintains two co-evolving populations simultaneously: one, denoted as convergence archive, is the driving force to push the population toward the Pareto front; the other one, denoted as diversity archive, mainly tends to maintain the population diversity. In particular, to complement the behavior of the convergence archive and provide as much diversified information as possible, the diversity archive aims at exploring areas under-exploited by the convergence archive including the infeasible regions. To leverage the complementary effects of both archives, we develop a restricted mating selection mechanism that adaptively chooses appropriate mating parents from them according to their evolution status. Comprehensive experiments on a series of benchmark problems and a real-world case study fully demonstrate the competitiveness of our proposed algorithm, comparing to five state-of-the-art constrained evolutionary multi-objective optimizers.
88 - Ke Li , Renzhi Chen 2021
Multi-objective optimization problems are ubiquitous in real-world science, engineering and design optimization problems. It is not uncommon that the objective functions are as a black box, the evaluation of which usually involve time-consuming and/or costly physical experiments. Data-driven evolutionary optimization can be used to search for a set of non-dominated trade-off solutions, where the expensive objective functions are approximated as a surrogate model. In this paper, we propose a framework for implementing batched data-driven evolutionary multi-objective optimization. It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner. In particular, it has two unique components: 1) based on the Karush-Kuhn-Tucker conditions, a manifold interpolation approach that explores more diversified solutions with a convergence guarantee along the manifold of the approximated Pareto-optimal set; and 2) a batch recommendation approach that reduces the computational time of the optimization process by evaluating multiple samples at a time in parallel. Experiments on 136 benchmark test problem instances with irregular Pareto-optimal front shapes against six state-of-the-art surrogate-assisted EMO algorithms fully demonstrate the effectiveness and superiority of our proposed framework. In particular, our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
The infeasible parts of the objective space in difficult many-objective optimization problems cause trouble for evolutionary algorithms. This paper proposes a reference vector based algorithm which uses two interacting engines to adapt the reference vectors and to evolve the population towards the true Pareto Front (PF) s.t. the reference vectors are always evenly distributed within the current PF to provide appropriate guidance for selection. The current PF is tracked by maintaining an archive of undominated individuals, and adaptation of reference vectors is conducted with the help of another archive that contains layers of reference vectors corresponding to different density. Experimental results show the expected characteristics and competitive performance of the proposed algorithm TEEA.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا