Do you want to publish a course? Click here

Less Is More: Improved RNN-T Decoding Using Limited Label Context and Path Merging

83   0   0.0 ( 0 )
 Added by Yanzhang He
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

End-to-end models that condition the output label sequence on all previously predicted labels have emerged as popular alternatives to conventional systems for automatic speech recognition (ASR). Since unique label histories correspond to distinct models states, such models are decoded using an approximate beam-search process which produces a tree of hypotheses. In this work, we study the influence of the amount of label context on the models accuracy, and its impact on the efficiency of the decoding process. We find that we can limit the context of the recurrent neural network transducer (RNN-T) during training to just four previous word-piece labels, without degrading word error rate (WER) relative to the full-context baseline. Limiting context also provides opportunities to improve the efficiency of the beam-search process during decoding by removing redundant paths from the active beam, and instead retaining them in the final lattice. This path-merging scheme can also be applied when decoding the baseline full-context model through an approximation. Overall, we find that the proposed path-merging scheme is extremely effective allowing us to improve oracle WERs by up to 36% over the baseline, while simultaneously reducing the number of model evaluations by up to 5.3% without any degradation in WER.



rate research

Read More

350 - Rami Botros 2021
Previous works on the Recurrent Neural Network-Transducer (RNN-T) models have shown that, under some conditions, it is possible to simplify its prediction network with little or no loss in recognition accuracy (arXiv:2003.07705 [eess.AS], [2], arXiv:2012.06749 [cs.CL]). This is done by limiting the context size of previous labels and/or using a simpler architecture for its layers instead of LSTMs. The benefits of such changes include reduction in model size, faster inference and power savings, which are all useful for on-device applications. In this work, we study ways to make the RNN-T decoder (prediction network + joint network) smaller and faster without degradation in recognition performance. Our prediction network performs a simple weighted averaging of the input embeddings, and shares its embedding matrix weights with the joint networks output layer (a.k.a. weight tying, commonly used in language modeling arXiv:1611.01462 [cs.LG]). This simple design, when used in conjunction with additional Edit-based Minimum Bayes Risk (EMBR) training, reduces the RNN-T Decoder from 23M parameters to just 2M, without affecting word-error rate (WER).
Neural transducer-based systems such as RNN Transducers (RNN-T) for automatic speech recognition (ASR) blend the individual components of a traditional hybrid ASR systems (acoustic model, language model, punctuation model, inverse text normalization) into one single model. This greatly simplifies training and inference and hence makes RNN-T a desirable choice for ASR systems. In this work, we investigate use of RNN-T in applications that require a tune-able latency budget during inference time. We also improved the decoding speed of the originally proposed RNN-T beam search algorithm. We evaluated our proposed system on English videos ASR dataset and show that neural RNN-T models can achieve comparable WER and better computational efficiency compared to a well tuned hybrid ASR baseline.
Sentiment Analysis and Emotion Detection in conversation is key in several real-world applications, with an increase in modalities available aiding a better understanding of the underlying emotions. Multi-modal Emotion Detection and Sentiment Analysis can be particularly useful, as applications will be able to use specific subsets of available modalities, as per the available data. Current systems dealing with Multi-modal functionality fail to leverage and capture - the context of the conversation through all modalities, the dependency between the listener(s) and speaker emotional states, and the relevance and relationship between the available modalities. In this paper, we propose an end to end RNN architecture that attempts to take into account all the mentioned drawbacks. Our proposed model, at the time of writing, out-performs the state of the art on a benchmark dataset on a variety of accuracy and regression metrics.
Transformers have become one of the dominant architectures in deep learning, particularly as a powerful alternative to convolutional neural networks (CNNs) in computer vision. However, Transformer training and inference in previous works can be prohibitively expensive due to the quadratic complexity of self-attention over a long sequence of representations, especially for high-resolution dense prediction tasks. To this end, we present a novel Less attention vIsion Transformer (LIT), building upon the fact that convolutions, fully-connected (FC) layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences. Specifically, we propose a hierarchical Transformer where we use pure multi-layer perceptrons (MLPs) to encode rich local patterns in the early stages while applying self-attention modules to capture longer dependencies in deeper layers. Moreover, we further propose a learned deformable token merging module to adaptively fuse informative patches in a non-uniform manner. The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation, serving as a strong backbone for many vision tasks. Code is available at: https://github.com/MonashAI/LIT
Training datasets for semantic parsing are typically small due to the higher expertise required for annotation than most other NLP tasks. As a result, models for this application usually need additional prior knowledge to be built into the architecture or algorithm. The increased dependency on human experts hinders automation and raises the development and maintenance costs in practice. This work investigates whether a generic transformer-based seq2seq model can achieve competitive performance with minimal code-generation-specific inductive bias design. By exploiting a relatively sizeable monolingual corpus of the target programming language, which is cheap to mine from the web, we achieved 81.03% exact match accuracy on Django and 32.57 BLEU score on CoNaLa. Both are SOTA to the best of our knowledge. This positive evidence highlights a potentially easier path toward building accurate semantic parsers in practice.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا