Do you want to publish a course? Click here

A simplified estimate of the Effective Reproduction Number $R_t$ using its relation with the doubling time and application to Italian COVID-19 data

104   0   0.0 ( 0 )
 Added by Luca Lista
 Publication date 2020
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

A simplified method to compute $R_t$, the Effective Reproduction Number, is presented. The method relates the value of $R_t$ to the estimation of the doubling time performed with a local exponential fit. The condition $R_t = 1$ corresponds to a growth rate equal to zero or equivalently an infinite doubling time. Different assumptions on the probability distribution of the generation time are considered. A simple analytical solution is presented in case the generation time follows a gamma distribution.



rate research

Read More

We describe the population-based SEIR (susceptible, exposed, infected, removed) model developed by the Irish Epidemiological Modelling Advisory Group (IEMAG), which advises the Irish government on COVID-19 responses. The model assumes a time-varying effective contact rate (equivalently, a time-varying reproduction number) to model the effect of non-pharmaceutical interventions. A crucial technical challenge in applying such models is their accurate calibration to observed data, e.g., to the daily number of confirmed new cases, as the past history of the disease strongly affects predictions of future scenarios. We demonstrate an approach based on inversion of the SEIR equations in conjunction with statistical modelling and spline-fitting of the data, to produce a robust methodology for calibration of a wide class of models of this type.
A generalisation of the Susceptible-Infectious model is made to include a time-dependent transmission rate, which leads to a close analytical expression in terms of a logistic function. The solution can be applied to any continuous function chosen to describe the evolution of the transmission rate with time. Taking inspiration from real data of the Covid-19, for the case of cumulative confirmed positives and deaths, we propose an exponentially decaying transmission rate with two free parameters, one for its initial amplitude and another one for its decaying rate. The resultant time-dependent SI model, which under extra conditions recovers the standard Gompertz functional form, is then compared with data from selected countries and its parameters fit using Bayesian inference. We make predictions about the asymptotic number of confirmed positives and deaths, and discuss the possible evolution of the disease in each country in terms of our parametrisation of the transmission rate.
We develop a minimalist compartmental model to study the impact of mobility restrictions in Italy during the Covid-19 outbreak. We show that an early lockdown shifts the epidemic in time, while that beyond a critical value of the lockdown strength, the epidemic tend to restart after lifting the restrictions. As a consequence, specific mitigation strategies must be introduced. We characterize the relative importance of different broad strategies by accounting for two fundamental sources of heterogeneity, i.e. geography and demography. First, we consider Italian regions as separate administrative entities, in which social interactions between age classs occur. Due to the sparsity of the inter-regional mobility matrix, once started the epidemics tend to develop independently across areas, justifying the adoption of solutions specific to individual regions or to clusters of regions. Second, we show that social contacts between age classes play a fundamental role and that measures which take into account the age structure of the population can provide a significant contribution to mitigate the rebound effects. Our model is general, and while it does not analyze specific mitigation strategies, it highlights the relevance of some key parameters on non-pharmaceutical mitigation mechanisms for the epidemics.
143 - Xinyu Gao , Chao Fan , Yang Yang 2020
The spread of pandemics such as COVID-19 is strongly linked to human activities. The objective of this paper is to specify and examine early indicators of disease spread risk in cities during the initial stages of outbreak based on patterns of human activities obtained from digital trace data. In this study, the Venables distance (D_v), and the activity density (D_a) are used to quantify and evaluate human activities for 193 US counties, whose cumulative number of confirmed cases was greater than 100 as of March 31, 2020. Venables distance provides a measure of the agglomeration of the level of human activities based on the average distance of human activities across a city or a county (less distance could lead to a greater contact risk). Activity density provides a measure of level of overall activity level in a county or a city (more activity could lead to a greater risk). Accordingly, Pearson correlation analysis is used to examine the relationship between the two human activity indicators and the basic reproduction number in the following weeks. The results show statistically significant correlations between the indicators of human activities and the basic reproduction number in all counties, as well as a significant leader-follower relationship (time lag) between them. The results also show one to two weeks lag between the change in activity indicators and the decrease in the basic reproduction number. This result implies that the human activity indicators provide effective early indicators for the spread risk of the pandemic during the early stages of the outbreak. Hence, the results could be used by the authorities to proactively assess the risk of disease spread by monitoring the daily Venables distance and activity density in a proactive manner.
Since the end of 2019, COVID-19 has significantly affected the lives of people around the world. Towards the end of 2020, several COVID-19 vaccine candidates with relatively high efficacy have been reported in the final phase of clinical trials. Vaccines have been considered as critical tools for opening up social and economic activities, thereby lessening the impact of this disease on the society. This paper presents a simulation of COVID-19 spread using modified Susceptible-Infected-Removed (SIR) model under vaccine intervention in several localities of Malaysia, i.e. those cities or states with high relatively COVID-19 cases such as Kuala Lumpur, Penang, Sabah, and Sarawak. The results show that at different vaccine efficacy levels (0.75, 0.85, and 0.95), the curves of active infection vary slightly, indicating that vaccines with efficacy above 0.75 would produce the herd immunity required to level the curves. In addition, disparity is significant between implementing or not implementing a vaccination program. Simulation results also show that lowering the reproduction number, R0 is necessary to keep the infection curve flat despite vaccination. This is due to the assumption that vaccination is mostly carried out gradually at the assumed fixed rate. The statement is based on our simulation results with two values of R0: 1.1 and 1.2, indicative of reduction of R0 by social distancing. The lower R0 shows a smaller peak amplitude about half the value simulated with R0=1.2. In conclusion, the simulation model suggests a two-pronged strategy to combat the COVID-19 pandemic in Malaysia: vaccination and compliance with standard operating procedure issued by the World Health Organization (e.g. social distancing).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا