No Arabic abstract
The photoelectrochemical behavior of a planar 1 cm2 thick Ti-doped hematite film deposited on F:SnO2 coated glass was studied with both front and back illumination. Despite low quantum efficiency, photocurrent was observed upon back illumination with low wavelengths, indicating that some photogenerated holes are able to traverse at least 700 nm across the hematite film and effectively oxidize water. This cannot be accounted for using the commonly accepted hole collection length of hematite based on fitting to the Gartner model. Furthermore, under back illumination, 450 nm excitation resulted in increased photocurrent as compared to 530 nm excitation despite most of the light being absorbed further away from the surface. These results demonstrate that the photocurrent is strongly dependent on the optical excitation wavelength, and related to both delocalized holes with long lifetime and localized excitations rather than only being dependent on the proximity of the absorption to the surface.
Photoelectrochemical impedance spectroscopy (PEIS) is a useful tool for the characterization of photoelectrodes for solar water splitting. However, the analysis of PEIS spectra often involves a priori assumptions that might bias the results. This work puts forward an empirical method that analyzes the distribution of relaxation times (DRT), obtained directly from the measured PEIS spectra of a model hematite photoanode. By following how the DRT evolves as a function of control parameters such as the applied potential and composition of the electrolyte solution, we obtain unbiased insights into the underlying mechanisms that shape the photocurrent. In a subsequent step, we fit the data to a process-oriented equivalent circuit model (ECM) whose makeup is derived from the DRT analysis in the first step. This yields consistent quantitative trends of the dominant polarization processes observed. Our observations reveal a common step for the photo-oxidation reactions of water and H2O2 in alkaline solution
Transparent Fe1-xNixOOH overlayers (~2 nm thick) were deposited photoelectrochemically on (001) oriented heteroepitaxial Sn- and Zn-doped hematite (Fe2O3) thin film photoanodes. In both cases, the water photo-oxidation performance was improved by the co-catalyst overlayers. Intensity modulated photocurrent spectroscopy (IMPS) was applied to study the changes in the hole current and recombination current induced by the overlayers. For the Sn-doped hematite photoanode, the improvement in performance after deposition of the Fe1-xNixOOH overlayer was entirely due to reduction in the recombination current, leading to a cathodic shift in the onset potential. For the Zn-doped hematite photoanode, in addition to a reduction in recombination current, an increase in the hole current to the surface was also observed after the overlayer deposition, leading to a cathodic shift in the onset potential as well as an enhancement in the plateau photocurrent. These results demonstrate that Fe1-xNixOOH co-catalysts can play different roles depending on the underlying hematite photoanode. The effect of the co-catalyst is not always limited to changes in the surface properties, but also to an increase in hole current from the bulk to the surface that indicates a possible crosslink between surface and bulk processes.
Optimising the photoelectrochemical performance of hematite photoanodes for solar water splitting requires better understanding of the relationships between dopant distribution, structural defects and photoelectrochemical properties. Here, we use complementary characterisation techniques including electron microscopy, conductive atomic force microscopy (CAFM), Rutherford backscattering spectroscopy (RBS), atom probe tomography (APT) and intensity modulated photocurrent spectroscopy (IMPS) to study this correlation in Ti-doped (1 cat.%) hematite films deposited by pulsed laser deposition (PLD) on F:SnO2 (FTO) coated glass substrates. The deposition was carried out at 300 {deg}C, followed by annealing at 500 deg C for 2 h. Upon annealing, Ti was observed by APT to segregate to the hematite/FTO interface and into some hematite grains. Since no other pronounced changes in microstructure and chemical composition were observed by electron microscopy and RBS after annealing, the non-uniform Ti redistribution seems to be the reason for a reduced interfacial recombination in the annealed films, as observed by IMPS. This results in a lower onset potential, higher photocurrent and larger fill factor with respect to the as-deposited state. This work provides atomic-scale insights into the microscopic inhomogeneity in Ti-doped hematite thin films and the role of defect segregation in their electrical and photoelectrochemical properties.
In recent years, hematite potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics.
The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes involves photo-generated holes that oxidize water. A certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, xt, defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of xt by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement and hole scavenger measurement techniques are widely employed to determine xt, but they often lead to errors. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of xt because it provides direct information on both the total photocurrent and the surface recombination current. Careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. We compare the xt values obtained by these methods using heteroepitaxial hematite photoanodes. A wide spread of xt values is obtained by different analysis methods and different light sources and light intensities. Statistical analysis of the results show good correlation between different methods for measurements carried out with the same light source, light intensity and potential. However, there is a considerable spread in the results obtained by different methods. For accurate determination of xt, we recommend IMPS measurements with a bias light intensity such that the irradiance is as close as possible to the standard solar spectrum.