No Arabic abstract
The census of open clusters in the Milky Way is in a never-before seen state of flux. Recent works have reported hundreds of new open clusters thanks to the incredible astrometric quality of the Gaia satellite, but other works have also reported that many open clusters discovered in the pre Gaia era may be associations. We aim to conduct a comparison of clustering algorithms used to detect open clusters, attempting to statistically quantify their strengths and weaknesses by deriving the sensitivity, specificity, and precision of each as well as their true positive rate against a larger sample. We selected DBSCAN, HDBSCAN, and Gaussian mixture models for further study, owing to their speed and appropriateness for use with Gaia data. We developed a preprocessing pipeline for Gaia data and developed the algorithms further for the specific application to open clusters. We derived detection rates for all 1385 open clusters in the fields in our study as well as more detailed performance statistics for 100 of these open clusters. DBSCAN was sensitive to 50% to 62% of the true positive open clusters in our sample, with generally very good specificity and precision. HDBSCAN traded precision for a higher sensitivity of up to 82%, especially across different distances and scales of open clusters. Gaussian mixture models were slow and only sensitive to 33% of open clusters in our sample, which tended to be larger objects. Additionally, we report on 41 new open cluster candidates detected by HDBSCAN, three of which are closer than 500 pc. When used with additional post-processing to mitigate its false positives, we have found that HDBSCAN is the most sensitive and effective algorithm for recovering open clusters in Gaia data. Our results suggest that many more new and already reported open clusters have yet to be detected in Gaia data.
Corona-Australis is one of the nearest regions to the Sun with recent and ongoing star formation, but the current picture of its stellar (and substellar) content is not complete yet. We take advantage of the second data release of the Gaia space mission to revisit the stellar census and search for additional members of the young stellar association in Corona-Australis. We applied a probabilistic method to infer membership probabilities based on a multidimensional astrometric and photometric data set over a field of 128 deg$^{2}$ around the dark clouds of the region. We identify 313 high-probability candidate members to the Corona-Australis association, 262 of which had never been reported as members before. Our sample of members covers the magnitude range between $Ggtrsim5$ mag and $Glesssim20$ mag, and it reveals the existence of two kinematically and spatially distinct subgroups. There is a distributed `off-cloud population of stars located in the north of the dark clouds that is twice as numerous as the historically known `on-cloud population that is concentrated around the densest cores. By comparing the location of the stars in the HR-diagram with evolutionary models, we show that these two populations are younger than 10 Myr. Based on their infrared excess emission, we identify 28 Class II and 215 Class III stars among the sources with available infrared photometry, and we conclude that the frequency of Class II stars (i.e. `disc-bearing stars) in the on-cloud region is twice as large as compared to the off-cloud population. The distance derived for the Corona-Australis region based on this updated census is $d=149.4^{+0.4}_{-0.4}$ pc, which exceeds previous estimates by about 20 pc.In this paper we provide the most complete census of stars in Corona-Australis available to date that can be confirmed with Gaia data.
Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is revisited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high quality sample that has 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km/s. The accuracy, assessed by comparison to ground-based high resolution spectroscopy, is better than 1 km/s. Open clusters nicely follow the velocity distribution of field stars in the close Solar neighbourhood previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km/s. Clusters older than 1 Gyr span distances to the Galactic plane up to 1 kpc with a vertical velocity dispersion of 14 km/s, typical of the thin disc. Five pairs of clusters and one group with five members are possibly physically related. Other binary candidates previously identified turn out to be chance alignment.
Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by giving us the ability to trace Galactic spiral structure, star formation rates and metallicity gradients. We investigated the available Gaia DR2 catalogue of 1229 open clusters and studied cluster distances, sizes and membership distributions in the 3D space. An appropriate analysis of the parallaxto-distance transformation problem is presented in the context of getting distances toward open clusters and estimating their sizes. Based on our investigation of the Gaia DR2 data we argue that, within 2 kpc, the inverse-parallax method gives comparable results (distances and sizes) as the Bayesian approach based on the exponentially decreasing volume density prior. Both of these methods show very similar dependence of the line-of-sight elongation of clusters (needle-like shapes resulting from the parallax uncertainties) on the distance. We also looked at a measure of elongations of the studied clusters and find the maximum distance of 665 pc at which a spherical fit still contains about half of the stellar population of a cluster. It follows from these results that the 3D structure of an open cluster cannot be properly studied beyond about 500 pc when using any of mentioned standard transformations of parallaxes to distances.
Context: Chamaeleon is the southernmost low-mass star-forming complex within 200 pc from the Sun. Its stellar population has been extensively studied in the past, but the current census of the stellar content is not complete yet and deserves further investigation. Aims: We take advantage of the second data release of the textit{Gaia} space mission to expand the census of stars in Chamaeleon and to revisit the properties of the stellar populations associated to the Chamaeleon I (Cha I) and Chamaeleon II (Cha II) dark clouds. Methods: We perform a membership analysis of the sources in the textit{Gaia} catalogue over a field of 100 deg$^{2}$ encompassing the Chamaeleon clouds, and use this new census of cluster members to investigate the 6D structure of the complex. Results: We identify 188 and 41 high-probability members of the stellar populations in Cha I and Cha II, respectively, including 19 and 7 new members. Our sample covers the magnitude range from $G=6$ to $G=20$ mag in Cha I, and from $G=12$ to $G=18$ mag in Cha II. We confirm that the northern and southern subgroups of Cha I are located at different distances ($191.4^{+0.8}_{-0.8}$ pc and $186.7^{+1.0}_{-1.0}$ pc), but they exhibit the same space motion within the reported uncertainties. Cha II is located at a distance of $197.5^{+1.0}_{-0.9}$ pc and exhibits a space motion that is consistent with Cha I within the admittedly large uncertainties on the spatial velocities of the stars that come from radial velocity data. The median age of the stars derived from the Hertzsprung-Russell diagram (HRD) and stellar models is about 1-2 Myr, suggesting that they are somewhat younger than previously thought. We do not detect significant age differences between the Chamaeleon subgroups, but we show that Cha II exhibits a higher fraction of disc-bearing stars compared to Cha I.
The estimation of the main parameters of star clusters is significant in astrophysical studies. The most important aspect of using the Gaia DR2 survey lies in the positions, parallax, and proper motions of cluster stars with homogeneous photometry that make the membership probability determine with high accuracy. In this respect, depending on Gaia DR2 database, an analysis of the open star cluster Melotte 72 is taking place here. It is located at a distance of 2345+/-108 pc with an age of 1.0+/-0.5 Gyr. In studying the radial density profile, the radius is found to be 5.0+/-0.15 arcmin. The reddening, the luminosity and mass functions, the total mass of the cluster, and the galactic geometrical distances (X_Sun, Y_Sun, Z_Sun), and the distance from the galactic center (R_g ) have been estimated as well. Our study has shown a dynamical relaxation behavior of Melotte 72.