Do you want to publish a course? Click here

Grammar-Aware Question-Answering on Quantum Computers

75   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Natural language processing (NLP) is at the forefront of great advances in contemporary AI, and it is arguably one of the most challenging areas of the field. At the same time, with the steady growth of quantum hardware and notable improvements towards implementations of quantum algorithms, we are approaching an era when quantum computers perform tasks that cannot be done on classical computers with a reasonable amount of resources. This provides a new range of opportunities for AI, and for NLP specifically. Earlier work has already demonstrated a potential quantum advantage for NLP in a number of manners: (i) algorithmic speedups for search-related or classification tasks, which are the most dominant tasks within NLP, (ii) exponentially large quantum state spaces allow for accommodating complex linguistic structures, (iii) novel models of meaning employing density matrices naturally model linguistic phenomena such as hyponymy and linguistic ambiguity, among others. In this work, we perform the first implementation of an NLP task on noisy intermediate-scale quantum (NISQ) hardware. Sentences are instantiated as parameterised quantum circuits. We encode word-meanings in quantum states and we explicitly account for grammatical structure, which even in mainstream NLP is not commonplace, by faithfully hard-wiring it as entangling operations. This makes our approach to quantum natural language processing (QNLP) particularly NISQ-friendly. Our novel QNLP model shows concrete promise for scalability as the quality of the quantum hardware improves in the near future.



rate research

Read More

Grovers algorithm, a well-know quantum search algorithm, allows one to find the correct item in a database, with quadratic speedup. In this paper we adapt Grovers algorithm to the problem of finding a correct answer to a natural language question in English, thus contributing to the growing field of Quantum Natural Language Processing. Using a grammar that can be interpreted as tensor contractions, each word is represented as a quantum state that serves as input to the quantum circuit. We here introduce a quantum measurement to contract the representations of words, resulting in the representation of larger text fragments. Using this framework, a representation for the question is found that contains all the possible answers in equal quantum superposition, and allows for the building of an oracle that can detect a correct answer, being agnostic to the specific question. Furthermore, we show that our construction can deal with certain types of ambiguous phrases by keeping the various different meanings in quantum superposition.
We addressed the challenging task of video question answering, which requires machines to answer questions about videos in a natural language form. Previous state-of-the-art methods attempt to apply spatio-temporal attention mechanism on video frame features without explicitly modeling the location and relations among object interaction occurred in videos. However, the relations between object interaction and their location information are very critical for both action recognition and question reasoning. In this work, we propose to represent the contents in the video as a location-aware graph by incorporating the location information of an object into the graph construction. Here, each node is associated with an object represented by its appearance and location features. Based on the constructed graph, we propose to use graph convolution to infer both the category and temporal locations of an action. As the graph is built on objects, our method is able to focus on the foreground action contents for better video question answering. Lastly, we leverage an attention mechanism to combine the output of graph convolution and encoded question features for final answer reasoning. Extensive experiments demonstrate the effectiveness of the proposed methods. Specifically, our method significantly outperforms state-of-the-art methods on TGIF-QA, Youtube2Text-QA, and MSVD-QA datasets. Code and pre-trained models are publicly available at: https://github.com/SunDoge/L-GCN
It is essential for dialogue-based spatial reasoning systems to maintain memory of historical states of the world. In addition to conveying that the dialogue agent is mentally present and engaged with the task, referring to historical states may be crucial for enabling collaborative planning (e.g., for planning to return to a previous state, or diagnosing a past misstep). In this paper, we approach the problem of spatial memory in a multi-modal spoken dialogue system capable of answering questions about interaction history in a physical blocks world setting. This work builds upon a full spatial question-answering pipeline consisting of a vision system, speech input and output mediated by an animated avatar, a dialogue system that robustly interprets spatial queries, and a constraint solver that derives answers based on 3-D spatial modelling. The contributions of this work include a symbolic dialogue context registering knowledge about discourse history and changes in the world, as well as a natural language understanding module capable of interpreting free-form historical questions and querying the dialogue context to form an answer.
Answering questions on scholarly knowledge comprising text and other artifacts is a vital part of any research life cycle. Querying scholarly knowledge and retrieving suitable answers is currently hardly possible due to the following primary reason: machine inactionable, ambiguous and unstructured content in publications. We present JarvisQA, a BERT based system to answer questions on tabular views of scholarly knowledge graphs. Such tables can be found in a variety of shapes in the scholarly literature (e.g., surveys, comparisons or results). Our system can retrieve direct answers to a variety of different questions asked on tabular data in articles. Furthermore, we present a preliminary dataset of related tables and a corresponding set of natural language questions. This dataset is used as a benchmark for our system and can be reused by others. Additionally, JarvisQA is evaluated on two datasets against other baselines and shows an improvement of two to three folds in performance compared to related methods.
Performance on the most commonly used Visual Question Answering dataset (VQA v2) is starting to approach human accuracy. However, in interacting with state-of-the-art VQA models, it is clear that the problem is far from being solved. In order to stress test VQA models, we benchmark them against human-adversarial examples. Human subjects interact with a state-of-the-art VQA model, and for each image in the dataset, attempt to find a question where the models predicted answer is incorrect. We find that a wide range of state-of-the-art models perform poorly when evaluated on these examples. We conduct an extensive analysis of the collected adversarial examples and provide guidance on future research directions. We hope that this Adversarial VQA (AdVQA) benchmark can help drive progress in the field and advance the state of the art.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا