No Arabic abstract
TianQin is a geocentric space-based gravitational-wave observatory mission consisting of three drag-free controlled satellites in an equilateral triangle with an orbital radius of $ 10^{5}$ km. The constellation faces the white-dwarf binary RX J0806.3+1527 located slightly below the ecliptic plane, and is subject to gravitational perturbations that can distort the formation. In this study, we present combined methods to optimize the TianQin orbits so that a set of 5-year stability requirements can be met. Moreover, we discuss slow long-term drift of the detector pointing due to orbital precession, and put forward stable orbits with six other pointings along the lunar orbital plane. Some implications of the findings are pointed out.
TianQin is a space-based laser interferometric gravitational wave detector aimed at detecting gravitational waves at low frequencies (0.1 mHz -- 1 Hz). It is formed by three identical drag-free spacecrafts in an equilateral triangular constellation orbiting around the Earth. The distance between each pair of spacecrafts is approximately $1.7 times 10^{5} ~rm{km}$. The spacecrafts are interconnected by infrared laser beams forming up to three Michelson-type interferometers. The detailed mission design and the study of science objectives for the TianQin project depend crucially on the orbit and the response of the detector. In this paper, we provide the analytic expressions for the coordinates of the orbit for each spacecraft in the heliocentric-ecliptic coordinate system to the leading orders. This enables a sufficiently accurate study of science objectives and data analysis, and serves as a first step to further orbit design and optimization. We calculate the response of a single Michelson detector to plane gravitational waves in arbitrary waveform which is valid in the full range of the sensitive frequencies. It is then used to generate the more realistic sensitivity curve of TianQin. We apply this model on a reference white-dwarf binary as a proof of principle.
In future geocentric space-based gravitational-wave observatory missions, eclipses due to passing through the Moons and Earths shadows can negatively impact the sciencecrafts thermal stability and steady power supply. The occurrence should be reduced as much as possible in orbit design. In regard to TianQins circular high orbits, we tackle the combined challenges of avoiding eclipses and stabilizing the nearly equilateral-triangle constellation. Two strategies are proposed, including initial phase selection and orbit resizing to 1:8 synodic resonance with the Moon, where the latter involves slightly raising TianQins preliminary orbital radius of $1times 10^5$ km to $sim 100900$ km. As the result, we have identified pure-gravity target orbits with a permitted initial phase range of $sim 15^circ$, which can maintain eclipse-free during the 3+3 month observation windows throughout a 5-year mission started in 2034, and meanwhile fulfil the constellation stability requirements. Thereby the eclipse issue for TianQin can be largely resolved.
TianQin is a planned space-based gravitational wave (GW) observatory consisting of three earth orbiting satellites with an orbital radius of about $10^5~{rm km}$. The satellites will form a equilateral triangle constellation the plane of which is nearly perpendicular to the ecliptic plane. TianQin aims to detect GWs between $10^{-4}~{rm Hz}$ and $1~{rm Hz}$ that can be generated by a wide variety of important astrophysical and cosmological sources, including the inspiral of Galactic ultra-compact binaries, the inspiral of stellar-mass black hole binaries, extreme mass ratio inspirals, the merger of massive black hole binaries, and possibly the energetic processes in the very early universe or exotic sources such as cosmic strings. In order to start science operations around 2035, a roadmap called the 0123 plan is being used to bring the key technologies of TianQin to maturity, supported by the construction of a series of research facilities on the ground. Two major projects of the 0123 plan are being carried out. In this process, the team has created a new generation $17~{rm cm}$ single-body hollow corner-cube retro-reflector which has been launched with the QueQiao satellite on 21 May 2018; a new laser ranging station equipped with a $1.2~{rm m}$ telescope has been constructed and the station has successfully ranged to all the five retro-reflectors on the Moon; and the TianQin-1 experimental satellite has been launched on 20 December 2019 and the first round result shows that the satellite has exceeded all of its mission requirements.
TianQin is a proposed space-based gravitational-wave observatory mission to be deployed in high circular Earth orbits. The equilateral-triangle constellation, with a nearly fixed orientation, can be distorted primarily under the lunisolar perturbations. To accommodate science payload requirements, one must optimize the orbits to stabilize the configuration in terms of arm-length, relative velocity, and breathing angle variations. In this work, we present an efficient optimization method and investigate how changing the two main design factors, i.e., the orbital orientation and radius, impacts the constellation stability through single-variable studies. Thereby, one can arrive at the ranges of the orbital parameters that are comparatively more stable, which may assist future refined orbit design.
We present a time domain waveform model that describes the inspiral-merger-ringdown (IMR) of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to non-linear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero eccentricity limit. To improve phase accuracy, we incorporate higher-order post-Newtonian corrections for the energy flux of quasi-circular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced inspiral evolution prescription is combined with an analytical prescription for the merger-ringdown evolution using a catalog of numerical relativity simulations. This IMR waveform model reproduces effective-one-body waveforms for systems with mass-ratios between 1 to 15 in the zero eccentricity limit. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our eccentric model accurately reproduces the features of eccentric compact binary coalescence throughout the merger. Using this model we show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasi-circular, spin-aligned waveforms if the eccentricity $e_0$ of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies $e_0^{rm GW150914}leq0.15$ and $e_0^{rm GW151226}leq0.1$.