No Arabic abstract
We present a time domain waveform model that describes the inspiral-merger-ringdown (IMR) of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to non-linear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero eccentricity limit. To improve phase accuracy, we incorporate higher-order post-Newtonian corrections for the energy flux of quasi-circular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced inspiral evolution prescription is combined with an analytical prescription for the merger-ringdown evolution using a catalog of numerical relativity simulations. This IMR waveform model reproduces effective-one-body waveforms for systems with mass-ratios between 1 to 15 in the zero eccentricity limit. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our eccentric model accurately reproduces the features of eccentric compact binary coalescence throughout the merger. Using this model we show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasi-circular, spin-aligned waveforms if the eccentricity $e_0$ of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies $e_0^{rm GW150914}leq0.15$ and $e_0^{rm GW151226}leq0.1$.
We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. We use the same approach as is commonly employed in black-hole perturbation theory by introducing a relativistic parameterization of the dynamics that is defined by the orbital geometry and consists of a set of phase variables and quantities that evolve only due to gravitational radiation reaction. Specializing to nonspinning binaries, we derive the EOB evolution equations and compute the binarys radiative multipole moments that determine the gravitational waves through a decomposition into the fundamental frequencies of the motion. The major differences between our treatment and the quasi-Keplerian approach often used in post-Newtonian (PN) calculations are that the orbital parameters describe strong-field dynamics, and that expressing the multipole moments in terms of the frequencies simplifies the calculations and also results in an unambiguous orbit-averaging operation. While our description of the conservative dynamics is fully relativistic, we limit explicit derivations in the radiative sector to 1.5PN order for simplicity. This already enables us to establish methods for computing both instantaneous and hereditary contributions to the gravitational radiation in EOB coordinates that have straightforward extensions to higher PN order. The weak-field, small eccentricity limit of our results for the orbit-averaged fluxes of energy and angular momentum agrees with known PN results when expressed in terms of gauge-invariant quantities. We further address considerations for the numerical implementation of the model and the completion of the waveforms to include the merger and ringdown signals, and provide illustrative results.
We derive analytic expressions that provide Fourier domain gravitational wave (GW) response function for compact binaries inspiraling along moderately eccentric orbits. These expressions include amplitude corrections to the two GW polarization states that are accurate to the first post-Newtonian (PN) order. Additionally, our fully 3PN accurate GW phase evolution incorporates eccentricity effects up to sixth order at each PN order. Further, we develop a prescription to incorporate analytically the effects of 3PN accurate periastron advance in the GW phase evolution. This is how we provide a ready-to-use and efficient inspiral template family for compact binaries in moderately eccentric orbits. Preliminary GW data analysis explorations suggest that our template family should be required to construct analytic inspiral-merger-ringdown templates to model moderately eccentric compact binary coalescence.
We extend the gravitational self-force approach to encompass `self-interaction tidal effects for a compact body of mass $mu$ on a quasi-circular orbit around a black hole of mass $M gg mu$. Specifically, we define and calculate at $O(mu)$ (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at $O(mu)$. We present accurate numerical results for the Schwarzschild case for orbital radii up to the light-ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our results are consistent with leading-order post-Newtonian expansions, and demonstrate the existence of additional structure in the strong-field regime. We anticipate that our strong-field results will inform (e.g.) effective one-body models for the gravitational two-body problem that are invaluable in the ongoing search for gravitational waves.
Ultralight bosons can be abundantly produced through superradiance process by a spinning black hole and form a bound state with hydrogen-like spectrum. We show that such a gravitational atom typically possesses anomalously large mass quadrupole and leads to significant orbital precession when it forms an eccentric binary with a second compact object. Dynamically formed black hole binaries or pulsar-black hole binaries are typically eccentric during their early inspirals. We show that the large orbital precession can generate distinct and observable signature in their gravitational wave or pulsar timing signals.
Gravitational waves radiated by the coalescence of compact-object binaries containing a neutron star and a black hole are one of the most interesting sources for the ground-based gravitational-wave observatories Advanced LIGO and Advanced Virgo. Advanced LIGO will be sensitive to the inspiral of a $1.4, M_odot$ neutron star into a $10,M_odot$ black hole to a maximum distance of $sim 900$ Mpc. Achieving this sensitivity and extracting the physics imprinted in observed signals requires accurate modeling of the binary to construct template waveforms. In a NSBH binary, the black hole may have significant angular momentum (spin), which affects the phase evolution of the emitted gravitational waves. We investigate the ability of post-Newtonian (PN) templates to model the gravitational waves emitted during the inspiral phase of NSBH binaries. We restrict the black holes spin to be aligned with the orbital angular momentum and compare several approximants. We examine restricted amplitude waveforms that are accurate to 3.5PN order in the orbital dynamics and complete to 2.5PN order in the spin dynamics. We also consider PN waveforms with the recently derived 3.5PN spin-orbit and 3PN spin-orbit tail corrections. We compare these approximants to the effective-one-body model. For all these models, large disagreements start at low to moderate black hole spins, particularly for binaries where the spin is anti-aligned with the orbital angular momentum. We show that this divergence begins in the early inspiral at $v sim 0.2$ for $chi_{BH} sim 0.4$. PN spin corrections beyond those currently known will be required for optimal detection searches and to measure the parameters of neutron star--black hole binaries. While this complicates searches, the strong dependence of the gravitational-wave signal on the spin dynamics will make it possible to extract significant astrophysical information.