No Arabic abstract
This paper introduces and analyzes a preconditioned modified of the Hermitian and skew-Hermitian splitting (PMHSS). The large sparse continuous Sylvester equations are solved by PMHSS iterative algorithm based on nonHermitian, complex, positive definite/semidefinite, and symmetric matrices. We prove that the PMHSS is converged under suitable conditions. In addition, we propose an accelerated PMHSS method consisting of two preconditioned matrices and two iteration parameters {alpha}, b{eta}. Theoretical analysis showed that the convergence speed of the accelerated PMHSS is faster compared to the PMHSS. Also, the robustness and efficiency of the proposed two iterative algorithms were demonstrated in numerical experiments.
This paper develops and analyzes a general iterative framework for solving parameter-dependent and random diffusion problems. It is inspired by the multi-modes method of [7,8] and the ensemble method of [19] and extends those methods into a more general and unified framework. The main idea of the framework is to reformulate the underlying problem into another problem with a parameter-independent diffusion coefficient and a parameter-dependent (and solution-dependent) right-hand side, a fixed-point iteration is then employed to compute the solution of the reformulated problem. The main benefit of the proposed approach is that an efficient direct solver and a block Krylov subspace iterative solver can be used at each iteration, allowing to reuse the $LU$ matrix factorization or to do an efficient matrix-matrix multiplication for all parameters, which in turn results in significant computation saving. Convergence and rates of convergence are established for the iterative method both at the variational continuous level and at the finite element discrete level under some structure conditions. Several strategies for establishing reformulations of parameter-dependent and random diffusion problems are proposed and their computational complexity is analyzed. Several 1-D and 2-D numerical experiments are also provided to demonstrate the efficiency of the proposed iterative method and to validate the theoretical convergence results.
We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of emph{doubling}: they construct the iterate $Q_k = X_{2^k}$ of another naturally-arising fixed-point iteration $(X_h)$ via a sort of repeated squaring. The equations we consider are Stein equations $X - A^*XA=Q$, Lyapunov equations $A^*X+XA+Q=0$, discrete-time algebraic Riccati equations $X=Q+A^*X(I+GX)^{-1}A$, continuous-time algebraic Riccati equations $Q+A^*X+XA-XGX=0$, palindromic quadratic matrix equations $A+QY+A^*Y^2=0$, and nonlinear matrix equations $X+A^*X^{-1}A=Q$. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.
In this paper, an efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous media. The key idea is to enclose the inhomogeneity of the media by well separated artificial boundaries and then apply purely outgoing wave decomposition for the scattering field outside the enclosed region. As a result, the original multiple scattering problem can be decomposed into a finite number of single scattering problems, where each of them communicates with the other scattering problems only through its surrounding artificial boundary. Accordingly, they can be solved in a parallel manner at each iteration. This framework enjoys a great flexibility in using different combinations of iterative algorithms and single scattering problem solvers. The spectral element method seamlessly integrated with the non-reflecting boundary condition and the GMRES iteration is advocated and implemented in this work. The convergence of the proposed method is proved by using the compactness of involved integral operators. Ample numerical examples are presented to show its high accuracy and efficiency.
For a linear matrix function $f$ in $X in R^{mtimes n}$ we consider inhomogeneous linear matrix equations $f(X) = E$ for $E eq 0$ that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using the Conjugate Gradient and Lanczos methods in combination with the More-Sorensen optimizer. We build codes for ten linear matrix equations, of Sylvester, Lyapunov, Stein and structured types and their
Spectral residual methods are powerful tools for solving nonlinear systems of equations without derivatives. In a recent paper, it was shown that an acceleration technique based on the Sequential Secant Method can greatly improve its efficiency and robustness. In the present work, an R implementation of the method is presented. Numerical experiments with a widely used test bed compares the presented approach with its plain (i.e. non-accelerated) version that makes part of the R package BB. Additional numerical experiments compare the proposed method with NITSOL, a state-of-the-art solver for nonlinear systems. The comparison shows that the acceleration process greatly improves the robustness of its counterpart included in the existent R package. As a by-product, an interface is provided between R and the consolidated CUTEst collection, which contains over a thousand nonlinear programming problems of all types and represents a standard for evaluating the performance of optimization methods.