Do you want to publish a course? Click here

First discovery of new pulsars and RRATs with CHIME/FRB

90   0   0.0 ( 0 )
 Added by Deborah Good
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of seven new Galactic pulsars with the Canadian Hydrogen Intensity Mapping Experiments Fast Radio Burst backend (CHIME/FRB). These sources were first identified via single pulses in CHIME/FRB, then followed up with CHIME/Pulsar. Four sources appear to be rotating radio transients (RRATs), pulsar-like sources with occasional single pulse emission with an underlying periodicity. Of those four sources, three have detected periods ranging from 220 ms to 2.726 s. Three sources have more persistent but still intermittent emission and are likely intermittent or nulling pulsars. We have determined phase-coherent timing solutions for the latter three. These seven sources are the first discovery of previously unknown Galactic sources with CHIME/FRB and highlight the potential of fast radio burst detection instruments to search for intermittent Galactic radio sources.



rate research

Read More

71 - C. Ng , B. Wu , M. Ma 2020
The Pulsar backend of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has monitored hundreds of known pulsars in the northern sky since Fall 2018, providing a rich data set for the study of temporal variations in pulsar emission. Using a matched filtering technique, we report, for the first time, nulling behaviour in five pulsars as well as mode switching in nine pulsars. Only one of the pulsars is observed to show both nulling and moding signals. These new nulling and mode switching pulsars appear to come from a population with relatively long spin periods, in agreement with previous findings in the literature.
We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and non-repeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent non-repeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent non-repeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs - comprising a large fraction of the overall population - with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of $alpha=-1.40pm0.11(textrm{stat.})^{+0.06}_{-0.09}(textrm{sys.})$, consistent with the $-3/2$ expectation for a non-evolving population in Euclidean space. We find $alpha$ is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of $[820pm60(textrm{stat.})^{+220}_{-200}({textrm{sys.}})]/textrm{sky}/textrm{day}$ above a fluence of 5 Jy ms at 600 MHz, with scattering time at $600$ MHz under 10 ms, and DM above 100 pc cm$^{-3}$.
We present a synthesis of fast radio burst (FRB) morphology (the change in flux as a function of time and frequency) as detected in the 400-800 MHz octave by the FRB project on the Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB), using events from the first CHIME/FRB catalog. The catalog consists of 61 bursts from 18 repeating sources, plus 474 one-off FRBs, detected between 2018 July 25 and 2019 July 2. We identify four observed archetypes of burst morphology (simple broadband, simple narrowband, temporally complex and downward drifting) and describe relevant instrumental biases that are essential for interpreting the observed morphologies. Using the catalog properties of the FRBs, we confirm that bursts from repeating sources, on average, have larger widths and we show, for the first time, that bursts from repeating sources, on average, are narrower in bandwidth. This difference could be due to a beaming or propagation effects, or it could be intrinsic to the populations. We discuss potential implications of these morphological differences for using FRBs as astrophysical tools.
We report on the discovery and analysis of bursts from nine new repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 195 to 1380 pc cm$^{-3}$. We detect two bursts from three of the new sources, three bursts from four of the new sources, four bursts from one new source, and five bursts from one new source. We determine sky coordinates of all sources with uncertainties of $sim$10$^prime$. We detect Faraday rotation measures for two sources, with values $-20(1)$ and $-499.8(7)$ rad m$^{-2}$, that are substantially lower than the RM derived from bursts emitted by FRB 121102. We find that the DM distribution of our events, combined with the nine other repeaters discovered by CHIME/FRB, is indistinguishable from that of thus far non-repeating CHIME/FRB events. However, as previously reported, the burst widths appear statistically significantly larger than the thus far non-repeating CHIME/FRB events, further supporting the notion of inherently different emission mechanisms and/or local environments. These results are consistent with previous work, though are now derived from 18 repeating sources discovered by CHIME/FRB during its first year of operation. We identify candidate galaxies that may contain FRB 190303.J1353+48 (DM = 222.4 pc cm$^{-3}$).
We report on the discovery of eight repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 103.5 to 1281 pc cm$^{-3}$. They display varying degrees of activity: six sources were detected twice, another three times, and one ten times. These eight repeating FRBs likely represent the bright and/or high-rate end of a distribution of infrequently repeating sources. For all sources, we determine sky coordinates with uncertainties of $sim$10$^prime$. FRB 180916.J0158+65 has a burst-averaged DM = $349.2 pm 0.3$ pc cm$^{-3}$ and a low DM excess over the modelled Galactic maximum (as low as $sim$20 pc cm$^{-3}$); this source also has a Faraday rotation measure (RM) of $-114.6 pm 0.6$ rad m$^{-2}$, much lower than the RM measured for FRB 121102. FRB 181030.J1054+73 has the lowest DM for a repeater, $103.5 pm 0.3$ pc cm$^{-3}$, with a DM excess of $sim$ 70 pc cm$^{-3}$. Both sources are interesting targets for multi-wavelength follow-up due to their apparent proximity. The DM distribution of our repeater sample is statistically indistinguishable from that of the first 12 CHIME/FRB sources that have not repeated. We find, with 4$sigma$ significance, that repeater bursts are generally wider than those of CHIME/FRB bursts that have not repeated, suggesting different emission mechanisms. Our repeater events show complex morphologies that are reminiscent of the first two discovered repeating FRBs. The repetitive behavior of these sources will enable interferometric localizations and subsequent host galaxy identifications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا