Do you want to publish a course? Click here

Tractable Combinations of Theories via Sampling

101   0   0.0 ( 0 )
 Added by Johannes Greiner
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

For a first-order theory $T$, the Constraint Satisfaction Problem of $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. In this article we develop sufficient conditions for polynomial-time tractability of the constraint satisfaction problem for the union of two theories with disjoint relational signatures. To this end, we introduce the concept of sampling for theories and show that samplings can be applied to examples which are not covered by the seminal result of Nelson and Oppen.



rate research

Read More

The constraint satisfaction problem (CSP) of a first-order theory $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. We study the computational complexity of $mathrm{CSP}(T_1 cup T_2)$ where $T_1$ and $T_2$ are theories with disjoint finite relational signatures. We prove that if $T_1$ and $T_2$ are the theories of temporal structures, i.e., structures where all relations have a first-order definition in $(mathbb{Q};<)$, then $mathrm{CSP}(T_1 cup T_2)$ is in P or NP-complete. To this end we prove a purely algebraic statement about the structure of the lattice of locally closed clones over the domain ${mathbb Q}$ that contain $mathrm{Aut}(mathbb{Q};<)$.
We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph $G$ on $n$ vertices described by a binary string of length $N$, an integer $kleq log n$, and an error parameter $epsilon > 0$, our algorithm runs in space $tilde{O}(klog (Ncdot w_{mathrm{max}}/w_{mathrm{min}}))$ where $w_{mathrm{max}}$ and $w_{mathrm{min}}$ are the maximum and minimum edge weights in $G$, and produces a weighted graph $H$ with $tilde{O}(n^{1+2/k}/epsilon^2)$ edges that spectrally approximates $G$, in the sense of Spielmen and Teng [ST04], up to an error of $epsilon$. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastavas effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by $k$ above, and the resulting sparsity that can be achieved.
This paper investigates the computational complexity of deciding if a given finite idempotent algebra has a ternary term operation $m$ that satisfies the minority equations $m(y,x,x) approx m(x,y,x) approx m(x,x,y) approx y$. We show that a common polynomial-time approach to testing for this type of condition will not work in this case and that this decision problem lies in the class NP.
136 - Ilya B. Shapirovsky 2020
We consider the operation of sum on Kripke frames, where a family of frames-summands is indexed by elements of another frame. In many cases, the modal logic of sums inherits the finite model property and decidability from the modal logic of summands. In this paper we show that, under a general condition, the satisfiability problem on sums is polynomial space Turing reducible to the satisfiability problem on summands. In particular, for many modal logics decidability in PSPACE is an immediate corollary from the semantic characterization of the logic.
Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in fixed-point logic with counting. The border between the two regimes coincides with an important dichotomy in universal algebra; in particular, the border can be described by a strong height-one Maltsev condition. For infinite-domain CSPs, the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (Q;<); such CSPs are called temporal CSPs and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the Boolean rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا