Do you want to publish a course? Click here

The bat coronavirus RmYN02 is characterized by a 6-nucleotide deletion at the S1/S2 junction, and its claimed PAA insertion is highly doubtful

80   0   0.0 ( 0 )
 Added by Rossana Segreto
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Zhou et al. reported the discovery of RmYN02, a strain closely related to SARS-CoV-2, which is claimed to contain a natural PAA amino acid insertion at the S1/S2 junction of the spike protein at the same position of the PRRA insertion that has created a polybasic furin cleavage site in SARS-CoV-2. The authors support with their findings the theory that the furin cleavage site insertion present in SARS-CoV-2 is natural. Because no nucleotide alignment with closely related strains of the region coding for the supposed insertion is provided by Zhou et al., we have applied several alignment algorithms to search for the most parsimonious alignments. We conclude that RmYN02 does not contain an insertion at the S1/S2 junction when compared to its closest relatives at the nucleotide level, but rather a 6-nucleotide deletion and that the claimed PAA insertion is more likely to be the result of mutations. A close examination of RmYN02 sequencing records and assembly methods is wishful. In conclusion, SARS-CoV-2, with its 12-nucleotide insertion at the S1/S2 junction remains unique among its sarbecovirus relatives.



rate research

Read More

Sequence coverage in MS analysis of protein digestion-derived peptides is a key issue for detailed characterization of proteins or identification at low quantities. In gel-based proteomics studies, the sequence coverage greatly depends on the protein detection method. It is shown here that ammoniacal silver detection methods offer improved sequence coverage over standard silver nitrate methods, while keeping the high sensitivity of silver staining. With the development of 2D-PAGE-based proteomics, another burden is placed on the detection methods used for protein detection on 2-D-gels. Besides the classical requirements of linearity, sensitivity, and homogeneity from one protein to another, detection methods must now take into account another aspect, namely their compatibility with MS. This compatibility is evidenced by two different and complementary aspects, which are (i) the absence of adducts and artefactual modifications on the peptides obtained after protease digestion of a protein detected and digested in - gel, and (ii) the quantitative yield of peptides recovered after digestion and analyzed by the mass spectrometer. While this quantitative yield is not very important per se, it is however a crucial parameter as it strongly influences the S/N of the mass spectrum and thus the number of peptides that can be detected from a given protein input, especially at low protein amounts. This influences in turn the sequence coverage and thus the detail of the analysis provided by the mass spectrometer.
Next-generation sequencing technology enables routine detection of bacterial pathogens for clinical diagnostics and genetic research. Whole genome sequencing has been of importance in the epidemiologic analysis of bacterial pathogens. However, few whole genome sequencing-based genotyping pipelines are available for practical applications. Here, we present the whole genome sequencing-based single nucleotide polymorphism (SNP) genotyping method and apply to the evolutionary analysis of methicillin-resistant Staphylococcus aureus. The SNP genotyping method calls genome variants using next-generation sequencing reads of whole genomes and calculates the pair-wise Jaccard distances of the genome variants. The method may reveal the high-resolution whole genome SNP profiles and the structural variants of different isolates of methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains. The phylogenetic analysis of whole genomes and particular regions may monitor and track the evolution and the transmission dynamic of bacterial pathogens. The computer programs of the whole genome sequencing-based SNP genotyping method are available to the public at https://github.com/cyinbox/NGS.
The Dissertation is focused on the studies of associations between functional elements in human genome and their nucleotide structure. The asymmetry in nucleotide content (skew, bias) was chosen as the main feature for nucleotide structure. A significant difference in nucleotide content asymmetry was found for human exons vs. introns. Specifically, exon sequences display bias for purines (i.e., excess of A and G over C and T), while introns exhibit keto-amino skew (i.e. excess of G and T over A and C). The extents of these biases depend upon gene expression patterns. The highest intronic keto-amino skew is found in the introns of housekeeping genes. In the case of introns, whose sequences are under weak repair system, the AT->GC and CG->TA substitutions are preferentially accumulated. A comparative analysis of gene sequences encoding cytochrome P450 2E1 of Homo sapiens and representative mammals was done. The cladistic tree on the basis of coding sequences similarity of the gene Cyp2e1 was constructed. A new programming tools of NCBI database sequence mining and analysis was developed, resulting in construction of a own database.
382 - Changchuan Yin 2020
The emerging global infectious COVID-19 coronavirus disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China. The virus has gone through various pathways of evolution. For understanding the evolution and transmission of SARS-CoV-2, genotyping of virus isolates is of great importance. We present an accurate method for effectively genotyping SARS-CoV-2 viruses using complete genomes. The method employs the multiple sequence alignments of the genome isolates with the SARS-CoV-2 reference genome. The SNP genotypes are then measured by Jaccard distances to track the relationship of virus isolates. The genotyping analysis of SARS-CoV-2 isolates from the globe reveals that specific multiple mutations are the predominated mutation type during the current epidemic. Our method serves a promising tool for monitoring and tracking the epidemic of pathogenic viruses in their gradual and local genetic variations. The genotyping analysis shows that the genes encoding the S proteins and RNA polymerase, RNA primase, and nucleoprotein, undergo frequent mutations. These mutations are critical for vaccine development in disease control.
In protein-protein interaction networks certain topological properties appear to be recurrent: networks maps are considered scale-free. It is possible that this topology is reflected in the protein structure. In this paper we investigate the role of protein disorder in the network topology. We find that the disorder of a protein (or of its neighbors) is independent of its number of protein-protein interactions. This result suggests that protein disorder does not play a role in the scale-free architecture of protein networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا