Do you want to publish a course? Click here

Genotyping coronavirus SARS-CoV-2: methods and implications

383   0   0.0 ( 0 )
 Added by Changchuan Yin Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The emerging global infectious COVID-19 coronavirus disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China. The virus has gone through various pathways of evolution. For understanding the evolution and transmission of SARS-CoV-2, genotyping of virus isolates is of great importance. We present an accurate method for effectively genotyping SARS-CoV-2 viruses using complete genomes. The method employs the multiple sequence alignments of the genome isolates with the SARS-CoV-2 reference genome. The SNP genotypes are then measured by Jaccard distances to track the relationship of virus isolates. The genotyping analysis of SARS-CoV-2 isolates from the globe reveals that specific multiple mutations are the predominated mutation type during the current epidemic. Our method serves a promising tool for monitoring and tracking the epidemic of pathogenic viruses in their gradual and local genetic variations. The genotyping analysis shows that the genes encoding the S proteins and RNA polymerase, RNA primase, and nucleoprotein, undergo frequent mutations. These mutations are critical for vaccine development in disease control.



rate research

Read More

242 - Changchuan Yin 2020
The ongoing global pandemic of infection disease COVID-19 caused by the 2019 novel coronavirus (SARS-COV-2, formerly 2019-nCoV) presents critical threats to public health and the economy since it was identified in China, December 2019. The genome of SARS-CoV-2 had been sequenced and structurally annotated, yet little is known of the intrinsic organization and evolution of the genome. To this end, we present a mathematical method for the genomic spectrum, a kind of barcode, of SARS-CoV-2 and common human coronaviruses. The genomic spectrum is constructed according to the periodic distributions of nucleotides, and therefore reflects the unique characteristics of the genome. The results demonstrate that coronavirus SARS-CoV-2 exhibits dinucleotide TT islands in the non-structural proteins 3, 4, 5, and 6. Further analysis of the dinucleotide regions suggests that the dinucleotide repeats are increased during evolution and may confer the evolutionary fitness of the virus. The special dinucleotide regions in the SARS-CoV-2 genome identified in this study may become diagnostic and pharmaceutical targets in monitoring and curing the COVID-19 disease.
The coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, has caused 60 millions of infections and 1.38 millions of fatalities. Genomic analysis of SARS-CoV-2 can provide insights on drug design and vaccine development for controlling the pandemic. Inverted repeats in a genome greatly impact the stability of the genome structure and regulate gene expression. Inverted repeats involve cellular evolution and genetic diversity, genome arrangements, and diseases. Here, we investigate the inverted repeats in the coronavirus SARS-CoV-2 genome. We found that SARS-CoV-2 genome has an abundance of inverted repeats. The inverted repeats are mainly located in the gene of the Spike protein. This result suggests the Spike protein gene undergoes recombination events, therefore, is essential for fast evolution. Comparison of the inverted repeat signatures in human and bat coronaviruses suggest that SARS-CoV-2 is mostly related SARS-related coronavirus, SARSr-CoV/RaTG13. The study also reveals that the recent SARS-related coronavirus, SARSr-CoV/RmYN02, has a high amount of inverted repeats in the spike protein gene. Besides, this study demonstrates that the inverted repeat distribution in a genome can be considered as the genomic signature. This study highlights the significance of inverted repeats in the evolution of SARS-CoV-2 and presents the inverted repeats as the genomic signature in genome analysis.
The transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of paramount importance to the controlling and combating of coronavirus disease 2019 (COVID-19) pandemic. Currently, near 15,000 SARS-CoV-2 single mutations have been recorded, having a great ramification to the development of diagnostics, vaccines, antibody therapies, and drugs. However, little is known about SARS-CoV-2 evolutionary characteristics and general trend. In this work, we present a comprehensive genotyping analysis of existing SARS-CoV-2 mutations. We reveal that host immune response via APOBEC and ADAR gene editing gives rise to near 65% of recorded mutations. Additionally, we show that children under age five and the elderly may be at high risk from COVID-19 because of their overreacting to the viral infection. Moreover, we uncover that populations of Oceania and Africa react significantly more intensively to SARS-CoV-2 infection than those of Europe and Asia, which may explain why African Americans were shown to be at increased risk of dying from COVID-19, in addition to their high risk of getting sick from COVID-19 caused by systemic health and social inequities. Finally, our study indicates that for two viral genome sequences of the same origin, their evolution order may be determined from the ratio of mutation type C$>$T over T$>$C.
123 - Rui Wang , Jiahui Chen , Kaifu Gao 2020
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been mutating since it was first sequenced in early January 2020. The genetic variants have developed into a few distinct clusters with different properties. Since the United States (US) has the highest number of viral infected patients globally, it is essential to understand the US SARS-CoV-2. Using genotyping, sequence-alignment, time-evolution, $k$-means clustering, protein-folding stability, algebraic topology, and network theory, we reveal that the US SARS-CoV-2 has four substrains and five top US SARS-CoV-2 mutations were first detected in China (2 cases), Singapore (2 cases), and the United Kingdom (1 case). The next three top US SARS-CoV-2 mutations were first detected in the US. These eight top mutations belong to two disconnected groups. The first group consisting of 5 concurrent mutations is prevailing, while the other group with three concurrent mutations gradually fades out. Our analysis suggests that female immune systems are more active than those of males in responding to SARS-CoV-2 infections. We identify that one of the top mutations, 27964C$>$T-(S24L) on ORF8, has an unusually strong gender dependence. Based on the analysis of all mutations on the spike protein, we further uncover that three of four US SASR-CoV-2 substrains become more infectious. Our study calls for effective viral control and containing strategies in the US.
In the current COVID19 crisis many national healthcare systems are confronted with an acute shortage of tests for confirming SARS-CoV-2 infections. For low overall infection levels in the population, pooling of samples can drastically amplify the testing efficiency. Here we present a formula to estimate the optimal pooling size, the efficiency gain (tested persons per test), and the expected upper bound of missed infections in the pooled testing, all as a function of the populationwide infection levels and the false negative/positive rates of the currently used PCR tests. Assuming an infection level of 0.1 % and a false negative rate of 2 %, the optimal pool size is about 32, the efficiency gain is about 15 tested persons per test. For an infection level of 1 % the optimal pool size is 11, the efficiency gain is 5.1 tested persons per test. For an infection level of 10 % the optimal pool size reduces to about 4, the efficiency gain is about 1.7 tested persons per test. For infection levels of 30 % and higher there is no more benefit from pooling. To see to what extent replicates of the pooled tests improve the estimate of the maximal number of missed infections, we present all results for 1, 3, and 5 replicates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا