No Arabic abstract
Symbolic control is a an abstraction-based controller synthesis approach that provides, algorithmically, certifiable-by-construction controllers for cyber-physical systems. Current methodologies of symbolic control usually assume that full-state information is available. This is not suitable for many real-world applications with partially-observable states or output information. This article introduces a framework for output-feedback symbolic control. We propose relations between original systems and their symbolic models based on outputs. They enable designing symbolic controllers and refining them to enforce complex requirements on original systems. To demonstrate the effectiveness of the proposed framework, we provide three different methodologies. They are applicable to a wide range of linear and nonlinear systems, and support general logic specifications.
This paper addresses the mean-square optimal control problem for a class of discrete-time linear systems with a quasi-colored control-dependent multiplicative noise via output feedback. The noise under study is novel and shown to have advantage on modeling a class of network phenomena such as random transmission delays. The optimal output feedback controller is designed using an optimal mean-square state feedback gain and two observer gains, which are determined by the mean-square stabilizing solution to a modified algebraic Riccati equation (MARE), provided that the plant is minimum-phase and left-invertible. A necessary and sufficient condition for the existence of the stabilizing solution to the MARE is explicitly presented. It shows that the separation principle holds in a certain sense for the optimal control design of the work. The result is also applied to the optimal control problems in networked systems with random transmission delays and analog erasure channels, respectively.
This article considers the $mathcal{H}_infty$ static output-feedback control for linear time-invariant uncertain systems with polynomial dependence on probabilistic time-invariant parametric uncertainties. By applying polynomial chaos theory, the control synthesis problem is solved using a high-dimensional expanded system which characterizes stochastic state uncertainty propagation. A closed-loop polynomial chaos transformation is proposed to derive the closed-loop expanded system. The approach explicitly accounts for the closed-loop dynamics and preserves the $mathcal{L}_2$-induced gain, which results in smaller transformation errors compared to existing polynomial chaos transformations. The effect of using finite-degree polynomial chaos expansions is first captured by a norm-bounded linear differential inclusion, and then addressed by formulating a robust polynomial chaos based control synthesis problem. This proposed approach avoids the use of high-degree polynomial chaos expansions to alleviate the destabilizing effect of truncation errors, which significantly reduces computational complexity. In addition, some analysis is given for the condition under which the robustly stabilized expanded system implies the robust stability of the original system. A numerical example illustrates the effectiveness of the proposed approach.
We propose a novel controller synthesis involving feedback from pixels, whereby the measurement is a high dimensional signal representing a pixelated image with Red-Green-Blue (RGB) values. The approach neither requires feature extraction, nor object detection, nor visual correspondence. The control policy does not involve the estimation of states or similar latent representations. Instead, tracking is achieved directly in image space, with a model of the reference signal embedded as required by the internal model principle. The reference signal is generated by a neural network with learning-based scene view synthesis capabilities. Our approach does not require an end-to-end learning of a pixel-to-action control policy. The approach is applied to a motion control problem, namely the longitudinal dynamics of a car-following problem. We show how this approach lend itself to a tractable stability analysis with associated bounds critical to establishing trustworthiness and interpretability of the closed-loop dynamics.
This paper presents a compositional framework for the construction of symbolic models for a network composed of a countably infinite number of finite-dimensional discrete-time control subsystems. We refer to such a network as infinite network. The proposed approach is based on the notion of alternating simulation functions. This notion relates a concrete network to its symbolic model with guaranteed mismatch bounds between their output behaviors. We propose a compositional approach to construct a symbolic model for an infinite network, together with an alternating simulation function, by composing symbolic models and alternating simulation functions constructed for subsystems. Assuming that each subsystem is incrementally input-to-state stable and under some small-gain type conditions, we present an algorithm for orderly constructing local symbolic models with properly designed quantization parameters. In this way, the proposed compositional approach can provide us a guideline for constructing an overall symbolic model with any desired approximation accuracy. A compositional controller synthesis scheme is also provided to enforce safety properties on the infinite network in a decentralized fashion. The effectiveness of our result is illustrated through a road traffic network consisting of infinitely many road cells.
Swarm robotic systems have foreseeable applications in the near future. Recently, there has been an increasing amount of literature that employs mean-field partial differential equations (PDEs) to model the time-evolution of the probability density of swarm robotic systems and uses mean-field feedback to design stable control laws that act on individuals such that their density converges to a target profile. However, it remains largely unexplored considering problems of how to estimate the mean-field density, how the density estimation algorithms affect the control performance, and whether the estimation performance in turn depends on the control algorithms. In this work, we focus on studying the interplay of these algorithms. Specially, we propose new mean-field control laws which use the real-time density and its gradient as feedback, and prove that they are globally input-to-state stable (ISS) to estimation errors. Then, we design filtering algorithms to obtain estimates of the density and its gradient, and prove that these estimates are convergent assuming the control laws are known. Finally, we show that the feedback interconnection of these estimation and control algorithms is still globally ISS, which is attributed to the bilinearity of the mean-field PDE system. An agent-based simulation is included to verify the stability of these algorithms and their feedback interconnection.