Do you want to publish a course? Click here

Optimal output feedback control of a class of linear systems with quasi-colored control-dependent multiplicative noise

182   0   0.0 ( 0 )
 Added by Junhui Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper addresses the mean-square optimal control problem for a class of discrete-time linear systems with a quasi-colored control-dependent multiplicative noise via output feedback. The noise under study is novel and shown to have advantage on modeling a class of network phenomena such as random transmission delays. The optimal output feedback controller is designed using an optimal mean-square state feedback gain and two observer gains, which are determined by the mean-square stabilizing solution to a modified algebraic Riccati equation (MARE), provided that the plant is minimum-phase and left-invertible. A necessary and sufficient condition for the existence of the stabilizing solution to the MARE is explicitly presented. It shows that the separation principle holds in a certain sense for the optimal control design of the work. The result is also applied to the optimal control problems in networked systems with random transmission delays and analog erasure channels, respectively.



rate research

Read More

86 - Mahmoud Khaled , Kuize Zhang , 2020
Symbolic control is a an abstraction-based controller synthesis approach that provides, algorithmically, certifiable-by-construction controllers for cyber-physical systems. Current methodologies of symbolic control usually assume that full-state information is available. This is not suitable for many real-world applications with partially-observable states or output information. This article introduces a framework for output-feedback symbolic control. We propose relations between original systems and their symbolic models based on outputs. They enable designing symbolic controllers and refining them to enforce complex requirements on original systems. To demonstrate the effectiveness of the proposed framework, we provide three different methodologies. They are applicable to a wide range of linear and nonlinear systems, and support general logic specifications.
We study identification of linear systems with multiplicative noise from multiple trajectory data. A least-squares algorithm, based on exploratory inputs, is proposed to simultaneously estimate the parameters of the nominal system and the covariance matrix of the multiplicative noise. The algorithm does not need prior knowledge of the noise or stability of the system, but requires mild conditions of inputs and relatively small length for each trajectory. Identifiability of the noise covariance matrix is studied, showing that there exists an equivalent class of matrices that generate the same second-moment dynamic of system states. It is demonstrated how to obtain the equivalent class based on estimates of the noise covariance. Asymptotic consistency of the algorithm is verified under sufficiently exciting inputs and system controllability conditions. Non-asymptotic estimation performance is also analyzed under the assumption that system states and noise are bounded, providing vanishing high-probability bounds as the number of trajectories grows to infinity. The results are illustrated by numerical simulations.
This article considers the $mathcal{H}_infty$ static output-feedback control for linear time-invariant uncertain systems with polynomial dependence on probabilistic time-invariant parametric uncertainties. By applying polynomial chaos theory, the control synthesis problem is solved using a high-dimensional expanded system which characterizes stochastic state uncertainty propagation. A closed-loop polynomial chaos transformation is proposed to derive the closed-loop expanded system. The approach explicitly accounts for the closed-loop dynamics and preserves the $mathcal{L}_2$-induced gain, which results in smaller transformation errors compared to existing polynomial chaos transformations. The effect of using finite-degree polynomial chaos expansions is first captured by a norm-bounded linear differential inclusion, and then addressed by formulating a robust polynomial chaos based control synthesis problem. This proposed approach avoids the use of high-degree polynomial chaos expansions to alleviate the destabilizing effect of truncation errors, which significantly reduces computational complexity. In addition, some analysis is given for the condition under which the robustly stabilized expanded system implies the robust stability of the original system. A numerical example illustrates the effectiveness of the proposed approach.
237 - Yutao Tang , Hao Zhu , Xiaoyong Lv 2020
In this paper, an optimal output consensus problem is studied for discrete-time linear multiagent systems subject to external disturbances. Each agent is assigned with a local cost function which is known only to itself. Distributed protocols are to be designed to guarantee an output consensus for these high-order agents and meanwhile minimize the aggregate cost as the sum of these local costs. To overcome the difficulties brought by high-order dynamics and external disturbances, we develop an embedded design and constructively present a distributed rule to solve this problem. The proposed control includes three terms: an optimal signal generator under a directed information graph, an observer-based compensator to reject these disturbances, and a reference tracking controller for these linear agents. It is shown to solve the formulated problem with some mild assumptions. A numerical example is also provided to illustrate the effectiveness of our proposed distributed control laws.
137 - Dajun Du , Changda Zhang , Xue Li 2021
We here investigate secure control of networked control systems developing a new dynamic watermarking (DW) scheme. Firstly, the weaknesses of the conventional DW scheme are revealed, and the tradeoff between the effectiveness of false data injection attack (FDIA) detection and system performance loss is analysed. Secondly, we propose a new DW scheme, and its attack detection capability is interrogated using the additive distortion power of a closed-loop system. Furthermore, the FDIA detection effectiveness of the closed-loop system is analysed using auto/cross covariance of the signals, where the positive correlation between the FDIA detection effectiveness and the watermarking intensity is measured. Thirdly, the tolerance capacity of FDIA against the closed-loop system is investigated, and theoretical analysis shows that the system performance can be recovered from FDIA using our new DW scheme. Finally, experimental results from a networked inverted pendulum system demonstrate the validity of our proposed scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا