Do you want to publish a course? Click here

Discovery of carbon-based strongest and hardest amorphous material

112   0   0.0 ( 0 )
 Added by Shuangshuang Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Carbon is likely the most fascinating element of the periodic table because of the diversity of its allotropes stemming from its variable (sp, sp2, and sp3) bonding motifs. Exploration of new forms of carbon has been an eternal theme of contemporary scientific research. Here we report on novel amorphous carbon phases containing high fraction of sp3 bonded atoms recovered after compressing fullerene C60 to previously unexplored high pressure and temperature. The synthesized carbons are the hardest and strongest amorphous materials known to date, capable of scratching diamond crystal and approaching its strength which is evidenced by complimentary mechanical tests. Photoluminescence and absorption spectra of the materials demonstrate they are semiconductors with tunable bandgaps in the range of 1.5-2.2 eV, comparable to that of amorphous silicon. A remarkable combination of the outstanding mechanical and electronic properties makes this class of amorphous carbons an excellent candidate for photovoltaic applications demanding ultrahigh strength and wear resistance.



rate research

Read More

We introduce a Gaussian approximation potential (GAP) for atomistic simulations of liquid and amorphous elemental carbon. Based on a machine-learning representation of the density-functional theory (DFT) potential-energy surface, such interatomic potentials enable materials simulations with close-to DFT accuracy but at much lower computational cost. We first determine the maximum accuracy that any finite-range potential can achieve in carbon structures; then, using a novel hierarchical set of two-, three-, and many-body structural descriptors, we construct a GAP model that can indeed reach the target accuracy. The potential yields accurate energetic and structural properties over a wide range of densities; it also correctly captures the structure of the liquid phases, at variance with state-of-the-art empirical potentials. Exemplary applications of the GAP model to surfaces of diamond-like tetrahedral amorphous carbon (ta-C) are presented, including an estimate of the amorphous materials surface energy, and simulations of high-temperature surface reconstructions (graphitization). The new interatomic potential appears to be promising for realistic and accurate simulations of nanoscale amorphous carbon structures.
In this work, we studied amorphous carbon ($a$-C) thin films deposited using direct current (dc) and high power impulse magnetron sputtering (HiPIMS) techniques. The microstructure and electronic properties reveal subtle differences in $a$-C thin films deposited by two techniques. While, films deposited with dcMS have a smooth texture typically found in $a$-C thin films, those deposited with HiPIMS consist of dense hillocks surrounded by a porous microstructure. The density of $a$-C thin films is a decisive parameter to judge their quality. Often, x-ray reflectivity (XRR) has been used to measure the density of carbon thin films. From the present work, we find that determination of density of carbon thin films, specially those with a thickness of few tens of nm, may not be accurate with XRR due to a poor scattering contrast between the film and substrate. By utilizing neutron reflectivity (NR) in the time of flight mode, a technique not commonly used for carbon thin films, we could accurately measure differences in the densities of $a$-C thin films deposited using dcMS and HiPIMS.
Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon. In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.
By using molecular dynamics simulation, formation mechanisms of amorphous carbon in particular sp${}^3$ rich structure was researched. The problem that reactive empirical bond order potential cannot represent amorphous carbon properly was cleared in the transition process from graphite to diamond by high pressure and the deposition process of amorphous carbon thin films. Moreover, the new potential model which is based on electron distribution simplified as a point charge was developed by using downfolding method. As a result, the molecular dynamics simulation with the new potential could demonstrate the transition from graphite to diamond at the pressure of 15 GPa corresponding to experiment and the deposition of sp${}^3$ rich amorphous carbon.
The structure of amorphous materials-continuous random networks (CRN) vs. CRN containing randomly dispersed crystallites-has been debated for decades. In two-dimensional (2D) materials, this question can be addressed more directly. Recently, controlled experimental conditions and atomic-resolution imaging found that monolayer amorphous carbon (MAC) is a CRN containing random graphene nanocrystallites. Here we report Monte Carlo simulations of the structure evolution of monolayer amorphous boron nitride (ma-BN) and demonstrate that it also features distorted sp2-bonding, but it has a purely CRN structure. The key difference is that, at low temperatures, C atoms easily form hexagons, whereas the probability to form canonical B-N-B-N-B-N hexagons is very low. On the other hand, hexagons have lower energy than non-hexagons, which results in hexagonal CRN regions that grow much like nanocrystallites in MAC. The net conclusion is that two distinct forms of amorphous structure are possible in 2D materials. The as-generated ma-BN is stable at room-temperature and insulating.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا