We theoretically study the thermal relaxation of many-body systems under the action of oscillating external fields. When the magnitude or the orientation of a field is modulated around values where the pairwise heat-exchange conductances depend non-linearly on this field, we demonstrate that the time symmetry is broken during the evolution of temperatures over a modulation cycle. We predict that this asymmetry enables a pumping of heat which can be used to cool down faster the system. This effect is illustrated through different magneto-optical systems under the action of an oscillating magnetic field.
We study parametrically driven quantum oscillators and show that, even for weak coupling between the oscillators, they can exhibit various many-body states with broken time-translation symmetry. In the quantum-coherent regime, the symmetry breaking occurs via a nonequilibrium quantum phase transition. For dissipative oscillators, the main effect of the weak coupling is to make the switching rate of an oscillator between its period-2 states dependent on the states of other oscillators. This allows mapping the oscillators onto a system of coupled spins. Away from the bifurcation parameter values where the period-2 states emerge, the stationary state corresponds to having a microscopic current in the spin system, in the presence of disorder. In the vicinity of the bifurcation point or for identical oscillators, the stationary state can be mapped on that of the Ising model with an effective temperature $propto hbar$, for low temperature. Closer to the bifurcation point the coupling can not be considered weak and the system maps onto coupled overdamped Brownian particles performing quantum diffusion in a potential landscape.
We propose a scenario to create topological superfluid in a periodically driven two-dimensional square optical lattice. We study the phase diagram of a spin-orbit coupled s-wave pairing superfluid in a periodically driven two-dimensional square optical lattice. We find that a phase transition from a trivial superfluid to a topological superfluid occurs when the potentials of the optical lattices are periodically changed. The topological phase is called Floquet topological superfluid and can host Majorana fermions.
Thermo-optic microheater is indispensable in silicon photonic devices for smart and reconfigurable photonic networks. Much efforts have been made to improve the metallic microheater performance in the past decades. However, because of the metallic nature of light absorption, placing the metallic microheater very close to the waveguide for fast response is impractical and has not been done experimentally. Here, we experimentally demonstrate a metallic microheater placed very close to the waveguide based on parity-time (PT) symmetry breaking. The intrinsic high loss of metallic heater ensures the system will operate in the PT-symmetry-broken region, which guarantee the low loss of light in the silicon waveguide. Moreover, heating at a close range significantly reduces the response time. A fast response time of ~1 us is achieved without introducing extra loss. The insertion loss is only 0.1 dB for the long heater. The modulation bandwidth is 280 kHz, which is an order of magnitude improvement when compared with that of the mainstream thermo-optic phase shifters. To verify the capability of large-scale integration, a 1*8 phased array for beam steering is also demonstrated experimentally with the PT-symmetry-broken metallic heaters. Our work provides a novel design concept for low-loss fast-response optical switches with dissipative materials and offers a new approach to enhance the performance of thermo-optic phase shifters.
Electrons in a lattice exhibit time-periodic motion, known as Bloch oscillation, when subject to an additional static electric field. Here we show that a corresponding dynamics can occur upon replacing the spatially periodic potential by a time-periodic driving: Floquet oscillations of charge carriers in a spatially homogeneous system. The time lattice of the driving gives rise to Floquet bands that take on the role of the usual Bloch bands. For two different drivings (harmonic driving and periodic kicking through pulses) of systems with linear dispersion we demonstrate the existence of such oscillations, both by directly propagating wave packets and based on a complementary Floquet analysis. The Floquet oscillations feature richer oscillation patterns than their Bloch counterpart and enable the imaging of Floquet bands. Moreover, their period can be directly tuned through the driving frequency. Such oscillations should be experimentally observable in effective Dirac systems, such as graphene, when illuminated with circularly polarized light.
An elusive goal in the field of driven quantum matter is the induction of long-range order. Here, we demonstrate a mechanism based on light-induced evaporative cooling of holes in a correlated electron system. Since the entropy of a filled narrow band grows rapidly with hole doping, the isentropic transfer of holes from a doped Mott insulator to such a band results in a drop of temperature. Strongly correlated Fermi liquids and symmetry-broken states could thus be produced by dipolar excitations. Using nonequilibrium dynamical mean field theory, we show that suitably designed chirped pulses allow to realize this cooling effect. In particular, we demonstrate the emergence of antiferromagnetic order in a system which is initially in a weakly correlated state above the maximum Neel temperature. Our work suggests a general strategy for inducing strong correlation phenomena and electronic orders in light-driven materials or periodically modulated atomic gases in optical lattice potentials.