Do you want to publish a course? Click here

Unsupervised Word Translation Pairing using Refinement based Point Set Registration

68   0   0.0 ( 0 )
 Added by Sourav Dutta
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Cross-lingual alignment of word embeddings play an important role in knowledge transfer across languages, for improving machine translation and other multi-lingual applications. Current unsupervised approaches rely on similarities in geometric structure of word embedding spaces across languages, to learn structure-preserving linear transformations using adversarial networks and refinement strategies. However, such techniques, in practice, tend to suffer from instability and convergence issues, requiring tedious fine-tuning for precise parameter setting. This paper proposes BioSpere, a novel framework for unsupervised mapping of bi-lingual word embeddings onto a shared vector space, by combining adversarial initialization and refinement procedure with point set registration algorithm used in image processing. We show that our framework alleviates the shortcomings of existing methodologies, and is relatively invariant to variable adversarial learning performance, depicting robustness in terms of parameter choices and training losses. Experimental evaluation on parallel dictionary induction task demonstrates state-of-the-art results for our framework on diverse language pairs.



rate research

Read More

294 - Xiang Li , Lingjing Wang , Yi Fang 2020
We propose a self-supervised method for partial point set registration. While recent proposed learning-based methods have achieved impressive registration performance on the full shape observations, these methods mostly suffer from performance degradation when dealing with partial shapes. To bridge the performance gaps between partial point set registration with full point set registration, we proposed to incorporate a shape completion network to benefit the registration process. To achieve this, we design a latent code for each pair of shapes, which can be regarded as a geometric encoding of the target shape. By doing so, our model does need an explicit feature embedding network to learn the feature encodings. More importantly, both our shape completion network and the point set registration network take the shared latent codes as input, which are optimized along with the parameters of two decoder networks in the training process. Therefore, the point set registration process can thus benefit from the joint optimization process of latent codes, which are enforced to represent the information of full shape instead of partial ones. In the inference stage, we fix the network parameter and optimize the latent codes to get the optimal shape completion and registration results. Our proposed method is pure unsupervised and does not need any ground truth supervision. Experiments on the ModelNet40 dataset demonstrate the effectiveness of our model for partial point set registration.
292 - Lingjing Wang , Xiang Li , Yi Fang 2020
In this paper, we propose a novel method named GP-Aligner to deal with the problem of non-rigid groupwise point set registration. Compared to previous non-learning approaches, our proposed method gains competitive advantages by leveraging the power of deep neural networks to effectively and efficiently learn to align a large number of highly deformed 3D shapes with superior performance. Unlike most learning-based methods that use an explicit feature encoding network to extract the per-shape features and their correlations, our model leverages a model-free learnable latent descriptor to characterize the group relationship. More specifically, for a given group we first define an optimizable Group Latent Descriptor (GLD) to characterize the gruopwise relationship among a group of point sets. Each GLD is randomly initialized from a Gaussian distribution and then concatenated with the coordinates of each point of the associated point sets in the group. A neural network-based decoder is further constructed to predict the coherent drifts as the desired transformation from input groups of shapes to aligned groups of shapes. During the optimization process, GP-Aligner jointly updates all GLDs and weight parameters of the decoder network towards the minimization of an unsupervised groupwise alignment loss. After optimization, for each group our model coherently drives each point set towards a middle, common position (shape) without specifying one as the target. GP-Aligner does not require large-scale training data for network training and it can directly align groups of point sets in a one-stage optimization process. GP-Aligner shows both accuracy and computational efficiency improvement in comparison with state-of-the-art methods for groupwise point set registration. Moreover, GP-Aligner is shown great efficiency in aligning a large number of groups of real-world 3D shapes.
Obtaining training data for Question Answering (QA) is time-consuming and resource-intensive, and existing QA datasets are only available for limited domains and languages. In this work, we explore to what extent high quality training data is actually required for Extractive QA, and investigate the possibility of unsupervised Extractive QA. We approach this problem by first learning to generate context, question and answer triples in an unsupervised manner, which we then use to synthesize Extractive QA training data automatically. To generate such triples, we first sample random context paragraphs from a large corpus of documents and then random noun phrases or named entity mentions from these paragraphs as answers. Next we convert answers in context to fill-in-the-blank cloze questions and finally translate them into natural questions. We propose and compare various unsupervised ways to perform cloze-to-natural question translation, including training an unsupervised NMT model using non-aligned corpora of natural questions and cloze questions as well as a rule-based approach. We find that modern QA models can learn to answer human questions surprisingly well using only synthetic training data. We demonstrate that, without using the SQuAD training data at all, our approach achieves 56.4 F1 on SQuAD v1 (64.5 F1 when the answer is a Named entity mention), outperforming early supervised models.
Unsupervised neural machine translation (UNMT) is beneficial especially for low resource languages such as those from the Dravidian family. However, UNMT systems tend to fail in realistic scenarios involving actual low resource languages. Recent works propose to utilize auxiliary parallel data and have achieved state-of-the-art results. In this work, we focus on unsupervised translation between English and Kannada, a low resource Dravidian language. We additionally utilize a limited amount of auxiliary data between English and other related Dravidian languages. We show that unifying the writing systems is essential in unsupervised translation between the Dravidian languages. We explore several model architectures that use the auxiliary data in order to maximize knowledge sharing and enable UNMT for distant language pairs. Our experiments demonstrate that it is crucial to include auxiliary languages that are similar to our focal language, Kannada. Furthermore, we propose a metric to measure language similarity and show that it serves as a good indicator for selecting the auxiliary languages.
Point cloud registration is the process of aligning a pair of point sets via searching for a geometric transformation. Unlike classical optimization-based methods, recent learning-based methods leverage the power of deep learning for registering a pair of point sets. In this paper, we propose to develop a novel model that organically integrates the optimization to learning, aiming to address the technical challenges in 3D registration. More specifically, in addition to the deep transformation decoding network, our framework introduce an optimizable deep underline{S}patial underline{C}orrelation underline{R}epresentation (SCR) feature. The SCR feature and weights of the transformation decoder network are jointly updated towards the minimization of an unsupervised alignment loss. We further propose an adaptive Chamfer loss for aligning partial shapes. To verify the performance of our proposed method, we conducted extensive experiments on the ModelNet40 dataset. The results demonstrate that our method achieves significantly better performance than the previous state-of-the-art approaches in the full/partial point set registration task.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا