Do you want to publish a course? Click here

Prediction of neonatal mortality in Sub-Saharan African countries using data-level linkage of multiple surveys

80   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing datasets available to address crucial problems, such as child mortality and family planning discontinuation in developing countries, are not ample for data-driven approaches. This is partly due to disjoint data collection efforts employed across locations, times, and variations of modalities. On the other hand, state-of-the-art methods for small data problem are confined to image modalities. In this work, we proposed a data-level linkage of disjoint surveys across Sub-Saharan African countries to improve prediction performance of neonatal death and provide cross-domain explainability.



rate research

Read More

COVID-19 is a new pandemic disease that is affecting almost every country with a negative impact on social life and economic activities. The number of infected and deceased patients continues to increase globally. Mathematical models can help in developing better strategies to contain a pandemic. Considering multiple measures taken by African governments and challenging socio-economic factors, simple models cannot fit the data. We studied the dynamical evolution of COVID-19 in selected African countries. We derived a time-dependent reproduction number for each country studied to offer further insights into the spread of COVID-19 in Africa.
Plasmodium falciparum malaria still poses one of the greatest threats to human life with over 200 million cases globally leading to half-million deaths annually. Of these, 90% of cases and of the mortality occurs in sub-Saharan Africa, mostly among children. Although malaria prediction systems are central to the 2016-2030 malaria Global Technical Strategy, currently these are inadequate at capturing and estimating the burden of disease in highly endemic countries. We developed and validated a computational system that exploits the predictive power of current Machine Learning approaches on 22-years of prospective data from the high-transmission holoendemic malaria urban-densely-populated sub-Saharan West-Africa metropolis of Ibadan. Our dataset of >9x104 screened study participants attending our clinical and community services from 1996 to 2017 contains monthly prevalence, temporal, environmental and host features. Our Locality-specific Elastic-Net based Malaria Prediction System (LEMPS) achieves good generalization performance, both in magnitude and direction of the prediction, when tasked to predict monthly prevalence on previously unseen validation data (MAE<=6x10-2, MSE<=7x10-3) within a range of (+0.1 to -0.05) error-tolerance which is relevant and usable for aiding decision-support in a holoendemic setting. LEMPS is well-suited for malaria prediction, where there are multiple features which are correlated with one another, and trading-off between regularization-strength L1-norm and L2-norm allows the system to retain stability. Data-driven systems are critical for regionally-adaptable surveillance, management of control strategies and resource allocation across stretched healthcare systems.
Predictive analytics over mobility data are of great importance since they can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example of such analytics is future location prediction, where the goal is to predict the future location of a moving object,given a look-ahead time. What is even more challenging is being able to accurately predict collective behavioural patterns of movement, such as co-movement patterns. In this paper, we provide an accurate solution to the problem of Online Prediction of Co-movement Patterns. In more detail, we split the original problem into two sub-problems, namely Future Location Prediction and Evolving Cluster Detection. Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates us to match the predicted clusters with the actual ones. Finally, the accuracy of our solution is demonstrated experimentally over a real dataset from the maritime domain.
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warranting increased efforts in monitoring this indicator in addition to the U5MR. A Bayesian splines regression model is presented for estimating neonatal mortality rates (NMR) for all countries. In the model, the relationship between NMR and U5MR is assessed and used to inform estimates, and spline regression models are used to capture country-specific trends. As such, the resulting NMR estimates incorporate trends in overall child mortality while also capturing data-driven trends. The model is fitted to 195 countries using the database from the United Nations Interagency Group for Child Mortality Estimation, producing estimates from 1990, or earlier if data are available, until 2015. The results suggest that, above a U5MR of 34 deaths per 1000 live births, at the global level, a 1 per cent increase in the U5MR leads to a 0.6 per cent decrease in the ratio of NMR to U5MR. Below a U5MR of 34 deaths per 1000 live births, the proportion of deaths under-five that are neonatal is constant at around 54 per cent. However, the relationship between U5MR and NMR varies across countries. The model has now been adopted by the United Nations Inter-agency Group for Child Mortality Estimation.
We studied the COVID-19 pandemic evolution in selected African countries. For each country considered, we modeled simultaneously the data of the active, recovered and death cases. In this study, we used a year of data since the first cases were reported. We estimated the time-dependent basic reproduction numbers, $R_0$, and the fractions of infected but unaffected populations, to offer insights into containment and vaccine strategies in African countries. We found that $R_0leq 4$ at the start of the pandemic but has since fallen to $R_0 sim 1$. The unaffected fractions of the populations studied vary between $1-10$% of the recovered cases.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا