No Arabic abstract
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warranting increased efforts in monitoring this indicator in addition to the U5MR. A Bayesian splines regression model is presented for estimating neonatal mortality rates (NMR) for all countries. In the model, the relationship between NMR and U5MR is assessed and used to inform estimates, and spline regression models are used to capture country-specific trends. As such, the resulting NMR estimates incorporate trends in overall child mortality while also capturing data-driven trends. The model is fitted to 195 countries using the database from the United Nations Interagency Group for Child Mortality Estimation, producing estimates from 1990, or earlier if data are available, until 2015. The results suggest that, above a U5MR of 34 deaths per 1000 live births, at the global level, a 1 per cent increase in the U5MR leads to a 0.6 per cent decrease in the ratio of NMR to U5MR. Below a U5MR of 34 deaths per 1000 live births, the proportion of deaths under-five that are neonatal is constant at around 54 per cent. However, the relationship between U5MR and NMR varies across countries. The model has now been adopted by the United Nations Inter-agency Group for Child Mortality Estimation.
Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in death counts is relatively high, and so the underlying mortality levels are unclear. We present a Bayesian hierarchical model to estimate mortality at the subnational level. The model builds on characteristic age patterns in mortality curves, which are constructed using principal components from a set of reference mortality curves. Information on mortality rates are pooled across geographic space and smoothed over time. Testing of the model shows reasonable estimates and uncertainty levels when the model is applied to both simulated data which mimic US counties, and real data for French departments. The estimates produced by the model have direct applications to the study of subregional health patterns and disparities.
Forecasts of mortality provide vital information about future populations, with implications for pension and health-care policy as well as for decisions made by private companies about life insurance and annuity pricing. Stochastic mortality forecasts allow the uncertainty in mortality predictions to be taken into consideration when making policy decisions and setting product prices. Longer lifespans imply that forecasts of mortality at ages 90 and above will become more important in such calculations. This paper presents a Bayesian approach to the forecasting of mortality that jointly estimates a Generalised Additive Model (GAM) for mortality for the majority of the age-range and a parametric model for older ages where the data are sparser. The GAM allows smooth components to be estimated for age, cohort and age-specific improvement rates, together with a non-smoothed period effect. Forecasts for the United Kingdom are produced using data from the Human Mortality Database spanning the period 1961-2013. A metric that approximates predictive accuracy under Leave-One-Out cross-validation is used to estimate weights for the `stacking of forecasts with different points of transition between the GAM and parametric elements. Mortality for males and females are estimated separately at first, but a joint model allows the asymptotic limit of mortality at old ages to be shared between sexes, and furthermore provides for forecasts accounting for correlations in period innovations. The joint and single sex model forecasts estimated using data from 1961-2003 are compared against observed data from 2004-2013 to facilitate model assessment.
A new method is proposed for estimating the rate of fugitive emissions of particulate matter from multiple time-dependent sources via measurements of deposition and concentration. We cast this source inversion problem within the Bayesian framework, and use a forward model based on a Gaussian plume solution. We present three alternate models for constructing the prior distribution on the emission rates as functions of time. Next, we present an industrial case study in which our framework is applied to estimate the rate of fugitive emissions of lead particulates from a smelter in Trail, British Columbia, Canada. The Bayesian framework not only provides an approximate solution to the inverse problem, but also quantifies the uncertainty in the solution. Using this information we perform an uncertainty propagation study in order to assess the impact of the estimated sources on the area surrounding the industrial site.
When a latent shoeprint is discovered at a crime scene, forensic analysts inspect it for distinctive patterns of wear such as scratches and holes (known as accidentals) on the source shoes sole. If its accidentals correspond to those of a suspects shoe, the print can be used as forensic evidence to place the suspect at the crime scene. The strength of this evidence depends on the random match probability---the chance that a shoe chosen at random would match the crime scene prints accidentals. Evaluating random match probabilities requires an accurate model for the spatial distribution of accidentals on shoe soles. A recent report by the Presidents Council of Advisors in Science and Technology criticized existing models in the literature, calling for new empirically validated techniques. We respond to this request with a new spatial point process model for accidental locations, developed within a hierarchical Bayesian framework. We treat the tread pattern of each shoe as a covariate, allowing us to pool information across large heterogeneous databases of shoes. Existing models ignore this information; our results show that including it leads to significantly better model fit. We demonstrate this by fitting our model to one such database.
Air pollution is a major risk factor for global health, with both ambient and household air pollution contributing substantial components of the overall global disease burden. One of the key drivers of adverse health effects is fine particulate matter ambient pollution (PM$_{2.5}$) to which an estimated 3 million deaths can be attributed annually. The primary source of information for estimating exposures has been measurements from ground monitoring networks but, although coverage is increasing, there remain regions in which monitoring is limited. Ground monitoring data therefore needs to be supplemented with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models. A hierarchical modelling approach for integrating data from multiple sources is proposed allowing spatially-varying relationships between ground measurements and other factors that estimate air quality. Set within a Bayesian framework, the resulting Data Integration Model for Air Quality (DIMAQ) is used to estimate exposures, together with associated measures of uncertainty, on a high resolution grid covering the entire world. Bayesian analysis on this scale can be computationally challenging and here approximate Bayesian inference is performed using Integrated Nested Laplace Approximations. Model selection and assessment is performed by cross-validation with the final model offering substantial increases in predictive accuracy, particularly in regions where there is sparse ground monitoring, when compared to current approaches: root mean square error (RMSE) reduced from 17.1 to 10.7, and population weighted RMSE from 23.1 to 12.1 $mu$gm$^{-3}$. Based on summaries of the posterior distributions for each grid cell, it is estimated that 92% of the worlds population reside in areas exceeding the World Health Organizations Air Quality Guidelines.