Do you want to publish a course? Click here

Low-Resolution Face Recognition In Resource-Constrained Environments

86   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A non-parametric low-resolution face recognition model for resource-constrained environments with limited networking and computing is proposed in this work. Such environments often demand a small model capable of being effectively trained on a small number of labeled data samples, with low training complexity, and low-resolution input images. To address these challenges, we adopt an emerging explainable machine learning methodology called successive subspace learning (SSL).SSL offers an explainable non-parametric model that flexibly trades the model size for verification performance. Its training complexity is significantly lower since its model is trained in a one-pass feedforward manner without backpropagation. Furthermore, active learning can be conveniently incorporated to reduce the labeling cost. The effectiveness of the proposed model is demonstrated by experiments on the LFW and the CMU Multi-PIE datasets.

rate research

Read More

128 - Peiying Li , Shikui Tu , Lei Xu 2021
Current face recognition tasks are usually carried out on high-quality face images, but in reality, most face images are captured under unconstrained or poor conditions, e.g., by video surveillance. Existing methods are featured by learning data uncertainty to avoid overfitting the noise, or by adding margins to the angle or cosine space of the normalized softmax loss to penalize the target logit, which enforces intra-class compactness and inter-class discrepancy. In this paper, we propose a deep Rival Penalized Competitive Learning (RPCL) for deep face recognition in low-resolution (LR) images. Inspired by the idea of the RPCL, our method further enforces regulation on the rival logit, which is defined as the largest non-target logit for an input image. Different from existing methods that only consider penalization on the target logit, our method not only strengthens the learning towards the target label, but also enforces a reverse direction, i.e., becoming de-learning, away from the rival label. Comprehensive experiments demonstrate that our method improves the existing state-of-the-art methods to be very robust for LR face recognition.
Heterogeneous face recognition (HFR) refers to matching face imagery across different domains. It has received much interest from the research community as a result of its profound implications in law enforcement. A wide variety of new invariant features, cross-modality matching models and heterogeneous datasets being established in recent years. This survey provides a comprehensive review of established techniques and recent developments in HFR. Moreover, we offer a detailed account of datasets and benchmarks commonly used for evaluation. We finish by assessing the state of the field and discussing promising directions for future research.
73 - Angelo G. Menezes 2021
Surveillance scenarios are prone to several problems since they usually involve low-resolution footage, and there is no control of how far the subjects may be from the camera in the first place. This situation is suitable for the application of upsampling (super-resolution) algorithms since they may be able to recover the discriminant properties of the subjects involved. While general super-resolution approaches were proposed to enhance image quality for human-level perception, biometrics super-resolution methods seek the best computer perception version of the image since their focus is on improving automatic recognition performance. Convolutional neural networks and deep learning algorithms, in general, have been applied to computer vision tasks and are now state-of-the-art for several sub-domains, including image classification, restoration, and super-resolution. However, no work has evaluated the effects that the latest proposed super-resolution methods may have upon the accuracy and face verification performance in low-resolution in-the-wild data. This project aimed at evaluating and adapting different deep neural network architectures for the task of face super-resolution driven by face recognition performance in real-world low-resolution images. The experimental results in a real-world surveillance and attendance datasets showed that general super-resolution architectures might enhance face verification performance of deep neural networks trained on high-resolution faces. Also, since neural networks are function approximators and can be trained based on specific objective functions, the use of a customized loss function optimized for feature extraction showed promising results for recovering discriminant features in low-resolution face images.
Practical face recognition has been studied in the past decades, but still remains an open challenge. Current prevailing approaches have already achieved substantial breakthroughs in recognition accuracy. However, their performance usually drops dramatically if face samples are severely misaligned. To address this problem, we propose a highly efficient misalignment-robust locality-constrained representation (MRLR) algorithm for practical real-time face recognition. Specifically, the locality constraint that activates the most correlated atoms and suppresses the uncorrelated ones, is applied to construct the dictionary for face alignment. Then we simultaneously align the warped face and update the locality-constrained dictionary, eventually obtaining the final alignment. Moreover, we make use of the block structure to accelerate the derived analytical solution. Experimental results on public data sets show that MRLR significantly outperforms several state-of-the-art approaches in terms of efficiency and scalability with even better performance.
Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very low-resolution is totally out of detail information of the face identity compared to normal resolution in a gallery and hard to find corresponding faces therein. To this end, we propose a Resolution Invariant Model (RIM) for addressing such cross-resolution face recognition problems, with three distinct novelties. First, RIM is a novel and unified deep architecture, containing a Face Hallucination sub-Net (FHN) and a Heterogeneous Recognition sub-Net (HRN), which are jointly learned end to end. Second, FHN is a well-designed tri-path Generative Adversarial Network (GAN) which simultaneously perceives facial structure and geometry prior information, i.e. landmark heatmaps and parsing maps, incorporated with an unsupervised cross-domain adversarial training strategy to super-resolve very low-resolution query image to its 8x larger ones without requiring them to be well aligned. Third, HRN is a generic Convolutional Neural Network (CNN) for heterogeneous face recognition with our proposed residual knowledge distillation strategy for learning discriminative yet generalized feature representation. Quantitative and qualitative experiments on several benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts. Codes and models will be released upon acceptance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا