Do you want to publish a course? Click here

On the irrationality of moduli spaces of K3 surfaces

101   0   0.0 ( 0 )
 Added by Ignacio Barros
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study how the degrees of irrationality of moduli spaces of polarized K3 surfaces grow with respect to the genus. We prove that the growth is bounded by a polynomial function of degree $14+varepsilon$ for any $varepsilon>0$ and, for three sets of infinitely many genera, the bounds can be improved to degree 10. The main ingredients in our proof are the modularity of the generating series of Heegner divisors due to Borcherds and its generalization to higher codimensions due to Kudla, Millson, Zhang, Bruinier, and Westerholt-Raum. For special genera, the proof is also built upon the existence of K3 surfaces associated with certain cubic fourfolds, Gushel-Mukai fourfolds, and hyperkaehler fourfolds.



rate research

Read More

We show that for many moduli spaces M of torsion sheaves on K3 surfaces S, the functor D(S) -> D(M) induced by the universal sheaf is a P-functor, hence can be used to construct an autoequivalence of D(M), and that this autoequivalence can be factored into geometrically meaningful equivalences associated to abelian fibrations and Mukai flops. Along the way we produce a derived equivalence between two compact hyperkaehler 2g-folds that are not birational, for every g >= 2. We also speculate about an approach to showing that birational moduli spaces of sheaves on K3 surfaces are derived-equivalent.
Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor recognizable if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification. For polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.
160 - Gerard van der Geer 2015
We review the results on the cycle classes of the strata defined by the height and the Artin invariant on the moduli of K3 surfaces in positive characteristic obtained in joint work with Katsura and Ekedahl. In addition we prove a new irreducibility result for these strata.
We show that the K-moduli spaces of log Fano pairs $(mathbb{P}^1timesmathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $mathbb{P}^3$. This, together with recent results by Laza-OGrady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $mathbb{P}^1timesmathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
135 - Daniel Bragg , Max Lieblich 2018
We develop a theory of twistor spaces for supersingular K3 surfaces, extending the analogy between supersingular K3 surfaces and complex analytic K3 surfaces. Our twistor spaces are obtained as relative moduli spaces of twisted sheaves on universal gerbes associated to the Brauer groups of supersingular K3 surfaces. In rank 0, this is a geometric incarnation of the Artin-Tate isomorphism. Twistor spaces give rise to curves in moduli spaces of twisted supersingular K3 surfaces, analogous to the analytic moduli space of marked K3 surfaces. We describe a theory of crystals for twisted supersingular K3 surfaces and a twisted period morphism from the moduli space of twisted supersingular K3 surfaces to this space of crystals. As applications of this theory, we give a new proof of the Ogus-Torelli theorem modeled on Verbitskys proof in the complex analytic setting and a new proof of the result of Rudakov-Shafarevich that supersingular K3 surfaces have potentially good reduction. These proofs work in characteristic 3, filling in the last remaining gaps in the theory. As a further application, we show that each component of the supersingular locus in each moduli space of polarized K3 surfaces is unirational.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا