Do you want to publish a course? Click here

Moduli spaces of torsion sheaves on K3 surfaces and derived equivalences

240   0   0.0 ( 0 )
 Added by Nicolas Addington
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We show that for many moduli spaces M of torsion sheaves on K3 surfaces S, the functor D(S) -> D(M) induced by the universal sheaf is a P-functor, hence can be used to construct an autoequivalence of D(M), and that this autoequivalence can be factored into geometrically meaningful equivalences associated to abelian fibrations and Mukai flops. Along the way we produce a derived equivalence between two compact hyperkaehler 2g-folds that are not birational, for every g >= 2. We also speculate about an approach to showing that birational moduli spaces of sheaves on K3 surfaces are derived-equivalent.



rate research

Read More

152 - Daniel Bragg 2018
We study the derived categories of twisted supersingular K3 surfaces. We prove a derived crystalline Torelli theorem for twisted supersingular K3 surfaces, characterizing Fourier-Mukai equivalences in terms of isomorphisms between their associated K3 crystals. This is a positive characteristic analog of the Hodge-theoretic derived Torelli theorem of Orlov, and its extension to twisted K3 surfaces by Huybrechts and Stellari. We give applications to various questions concerning Fourier-Mukai partners, extending results of Cu{a}ldu{a}raru and Huybrechts and Stellari. We also give an exact formula for the number of twisted Fourier-Mukai partners of a twisted supersingular K3 surface.
We study how the degrees of irrationality of moduli spaces of polarized K3 surfaces grow with respect to the genus. We prove that the growth is bounded by a polynomial function of degree $14+varepsilon$ for any $varepsilon>0$ and, for three sets of infinitely many genera, the bounds can be improved to degree 10. The main ingredients in our proof are the modularity of the generating series of Heegner divisors due to Borcherds and its generalization to higher codimensions due to Kudla, Millson, Zhang, Bruinier, and Westerholt-Raum. For special genera, the proof is also built upon the existence of K3 surfaces associated with certain cubic fourfolds, Gushel-Mukai fourfolds, and hyperkaehler fourfolds.
104 - Daniel Bragg , Ziquan Yang 2021
We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization of K3 surfaces isogenous to a given K3 surface $X$ in terms of certain integral sublattices of the second rational $ell$-adic and crystalline cohomology groups of $X$. This is a positive characteristic analog of a result of Huybrechts, and extends results of the second author. We give applications to the reduction types of K3 surfaces and to the surjectivity of the period morphism. To prove these results we describe a theory of B-fields and Mukai lattices in positive characteristic, which may be of independent interest. We also prove some results on lifting twisted Fourier--Mukai equivalences to characteristic 0, generalizing results of Lieblich and Olsson.
183 - R. Pandharipande 2008
The conjectural equivalence of curve counting on Calabi-Yau 3-folds via stable maps and stable pairs is discussed. By considering Calabi-Yau 3-folds with K3 fibrations, the correspondence naturally connects curve and sheaf counting on K3 surfaces. New results and conjectures (with D. Maulik) about descendent integration on K3 surfaces are announced. The recent proof of the Yau-Zaslow conjecture is surveyed. The paper accompanies my lecture at the Clay research conference in Cambridge, MA in May 2008.
Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor recognizable if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification. For polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا