Do you want to publish a course? Click here

Low microwave loss in deposited Si and Ge thin-film dielectrics at single-photon power and low temperatures

303   0   0.0 ( 0 )
 Added by Daniel Queen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our study shows that deposited Ge and Si dielectric thin-films can exhibit low microwave losses at near single-photon powers and sub-Kelvin temperatures ($approx$40 mK). This low loss enables their use in a wide range of devices, including low-loss coplanar, microstrip, and stripline resonators, as well as layers for device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication. We use coplanar microwave resonator structures with narrow trace widths of 2-16 $mu textrm{m}$ to maximize the sensitivity of loss tangent measurements to the interface and properties of the deposited dielectrics, rather than to optimize the quality factor. In this configuration, thermally-evaporated $approx 1 mu textrm{m}$ thick amorphous germanium (a-Ge) films deposited on Si (100) have a single photon loss tangent of $1-2times10^{-6}$ and, $9 mu textrm{m}$-thick chemical vapor deposited (CVD) homoepitaxial Si has a single photon loss tangent of $0.6-2times 10^{-5}$. Interface contamination limits the loss in these devices.

rate research

Read More

69 - S. Veronesi , T. Papa , Y. Murata 2019
There is a great interest in the scientific community to perform calorimetry on samples having mass in the nanogram range. A detailed knowledge of the energy (heat) exchange in the fast growing family of micro- and nano-systems could provide valuable information about the chemistry and physics at the nano-scale. The possibility to have an atomically flat thermal probe represents an added value, because it provides the unique opportunity to perform Scanning Probe Microscopy (SPM) together with calorimetry. Here we report the fabrication, characterization, and calibration of atomically flat, single-crystalline gold film thermometers on mica substrate. Gold re-crystallization has been obtained, and successively the thermometer surface has been studied by Low Energy Electron Diffraction (LEED) and Scanning Tunneling Microscopy (STM). The thermometer calibration demonstrates a heat exchange coefficient of 2.1 x 10^(-7) W/K and a performance about 10 times better than previous sensors based on Si substrates. The experimental setup allows the simultaneous investigation of heat exchange and surface physics on the same sample.
Two-dimensional (2D) semiconductors have been proposed for heterogeneous integration with existing silicon technology; however, their chemical vapor deposition (CVD) growth temperatures are often too high. Here, we demonstrate direct CVD solid-source precursor synthesis of continuous monolayer (1L) MoS$_2$ films at 560 C in 50 min, within the 450-to-600 C, 2 h thermal budget window required for back-end-of-the-line compatibility with modern silicon technology. Transistor measurements reveal on-state current up to ~140 $mathrm{{mu}A/{mu}m}$ at 1 V drain-to-source voltage for 100 nm channel lengths, the highest reported to date for 1L MoS$_2$ grown below 600 C using solid-source precursors. The effective mobility from transfer length method test structures is $mathrm{29 pm 5 cm^2V^{-1}s^{-1}}$ at $mathrm{6.1 times 10^{12} cm^{-2}}$ electron density, which is comparable to mobilities reported from films grown at higher temperatures. The results of this work provide a path toward the realization of high-quality, thermal-budget-compatible 2D semiconductors for heterogeneous integration with silicon manufacturing.
We fabricate AlGaN nanowires by molecular beam epitaxy and we investigate their field emission properties by means of an experimental setup using nano-manipulated tungsten tips as electrodes, inside a scanning electron microscope. The tip-shaped anode gives access to local properties and allows collecting electrons emitted from areas as small as 1$mu m^2$. The field emission characteristics are analyzed in the framework of Fowler-Nordheim theory and we find a field enhancement factor as high as $beta$ = 556 and a minimum turn-on field $E_{turn-on}$ = 17 V/$mu$m for a cathode-anode separation distance d = 500 nm. We show that for increasing separation distance, $E_{turn-on}$ increases up to about 35 V/$mu$m and $beta$ decreases to 100 at d = 1600 nm. We also demonstrate the time stability of the field emission current from AlGaN nanowires for several minutes. Finally, we explain the observation of modified slope of the Fowler-Nordheim plots at low fields in terms of non-homogeneous field enhancement factors due to the presence of protruding emitters.
Dielectric measurements on insulating materials at cryogenic temperatures can be challenging, depending on the frequency and temperature ranges of interest. We present a technique to study the dielectric properties of bulk dielectrics at GHz frequencies. A superconducting coplanar Nb resonator is deposited directly on the material of interest, and this resonator is then probed in distant-flip-chip geometry with a microwave feedline on a separate chip. Evaluating several harmonics of the resonator gives access to various probing frequencies, in the present studies up to 20 GHz. We demonstrate the technique on three different materials (MgO, LaAlO3, and TiO2), at temperatures between 1.4 K and 7 K.
Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor (CMOS) processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here we demonstrate a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We separate and support multiple wiring layers throughout fabrication using SiO$_2$ scaffolding, then remove it post-fabrication. This technique is compatible with foundry level processing and the can be generalized to make many different forms of low-loss multi-layer wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency $lambda/4$ coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of $sim 3.9 times 10^{-8}$ per bridge, which is 100 times lower than dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fuxmon qubits. We measure qubit characteristic lifetimes ($T_1$s) in excess of 30 $mu$s in gmon devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا