No Arabic abstract
The radius valley, a bifurcation in the size distribution of small, close-in exoplanets, is hypothesized to be a signature of planetary atmospheric loss. Such an evolutionary phenomenon should depend on the age of the star-planet system. In this work, we study the temporal evolution of the radius valley using two independent determinations of host star ages among the California-Kepler Survey (CKS) sample. We find evidence for a wide and nearly empty void of planets in the period-radius diagram at the youngest system ages ($lesssim$2-3 Gyr) represented in the CKS sample. We show that the orbital period dependence of the radius valley among the younger CKS planets is consistent with that found among those planets with asteroseismically determined host star radii. Relative to previous studies of preferentially older planets, the radius valley determined among the younger planetary sample is shifted to smaller radii. This result is compatible with an atmospheric loss timescale on the order of gigayears for progenitors of the largest observed super-Earths. In support of this interpretation, we show that the planet sizes which appear to be unrepresented at ages $lesssim$2-3 Gyr are likely to correspond to planets with rocky compositions. Our results suggest the size distribution of close-in exoplanets, and the precise location of the radius valley, evolves over gigayears.
Since the formation of the terrestrial planets, atmospheric loss has irreversibly altered their atmospheres, leading to remarkably different surface environments - Earth has remained habitable while Venus and Mars are apparently desolate. The concept of habitability centres around the availability of liquid water which depends greatly on the composition of the atmosphere. While the history of molecular oxygen O$_2$ in Earths atmosphere is debated, geological evidence supports at least two major episodes of increasing oxygenation: the Great Oxidation Event and the Neoproterozoic Oxidation Event. Both are thought to have been pivotal for the development and evolution of life. We demonstrate through three-dimensional simulations that atmospheric O$_2$ concentrations on Earth directly control the evolution and distribution of greenhouse gases (such as O$_3$, H$_2$O, CH$_4$ and CO$_2$) and the atmospheric temperature structure. In particular, at $leq 1$% the present atmospheric level (PAL) of O$_2$, the stratosphere collapses. Our simulations show that a biologically ineffective ozone shield, lower than previously thought, existed during the Proterozoic, with a need for a Phanerozoic ozone shield to allow the emergence of surface life. We find that O$_2$ acts as a valve for the loss rate of atmospheric hydrogen through the exosphere. Estimated levels of hydrogen escape for the Proterozoic eon are all lower than present day, enabling us to establish Earths water loss timeline. Furthermore, we demonstrate how O$_2$ on terrestrial exoplanets determines their theoretical transmission spectra, challenging signal-to-nose ratio assumptions contributing to the design of next generation telescopes that will facilitate the characterisation of Earth-like worlds.
Observations of the population of cold Jupiter planets ($r>$1 AU) show that nearly all of these planets orbit their host star on eccentric orbits. For planets up to a few Jupiter masses, eccentric orbits are thought to be the outcome of planet-planet scattering events taking place after gas dispersal. We simulate the growth of planets via pebble and gas accretion as well as the migration of multiple planetary embryos in their gas disc. We then follow the long-term dynamical evolution of our formed planetary system up to 100 Myr after gas disc dispersal. We investigate the importance of the initial number of protoplanetary embryos and different damping rates of eccentricity and inclination during the gas phase for the final configuration of our planetary systems. We constrain our model by comparing the final dynamical structure of our simulated planetary systems to that of observed exoplanet systems. Our results show that the initial number of planetary embryos has only a minor impact on the final orbital eccentricity distribution of the giant planets, as long as damping of eccentricity and inclination is efficient. If damping is inefficient (slow), systems with a larger initial number of embryos harbor larger average eccentricities. In addition, for slow damping rates, we observe that scattering events already during the gas disc phase are common and that the giant planets formed in these simulations match the observed giant planet eccentricity distribution best. These simulations also show that massive giant planets (above Jupiter mass) on eccentric orbits are less likely to host inner super-Earths as these get lost during the scattering phase, while systems with less massive giant planets on nearly circular orbits should harbor systems of inner super-Earths. Finally, our simulations predict that giant planets are on average not single, but live in multi-planet systems.
Recent advances in our understanding of the dynamical history of the Solar system have altered the inferred bombardment history of the Earth during accretion of the Late Veneer, after the Moon-forming impact. We investigate how the bombardment by planetesimals left-over from the terrestrial planet region after terrestrial planet formation, as well as asteroids and comets, affects the evolution of Earths early atmosphere. We develop a new statistical code of stochastic bombardment for atmosphere evolution, combining prescriptions for atmosphere loss and volatile delivery derived from hydrodynamic simulations and theory with results from dynamical modelling of realistic populations of impactors. We find that for an initially Earth-like atmosphere impacts cause moderate atmospheric erosion with stochastic delivery of large asteroids giving substantial growth ($times 10$) in a few $%$ of cases. The exact change in atmosphere mass is inherently stochastic and dependent on the dynamics of the left-over planetesimals. We also consider the dependence on unknowns including the impactor volatile content, finding that the atmosphere is typically completely stripped by especially dry left-over planetesimals ($<0.02 ~ %$ volatiles). Remarkably, for a wide range of initial atmosphere masses and compositions, the atmosphere converges towards similar final masses and compositions, i.e. initially low mass atmospheres grow whereas massive atmospheres deplete. While the final properties are sensitive to the assumed impactor properties, the resulting atmosphere mass is close to that of current Earth. The exception to this is that a large initial atmosphere cannot be eroded to the current mass unless the atmosphere was initially primordial in composition.
As a star spins-down during the main sequence, its wind properties are affected. In this work, we investigate how the Earths magnetosphere has responded to the change in the solar wind. Earths magnetosphere is simulated using 3D magnetohydrodynamic models that incorporate the evolving local properties of the solar wind. The solar wind, on the other hand, is modelled in 1.5D for a range of rotation rates Omega from 50 to 0.8 times the present-day solar rotation (Omega_sun). Our solar wind model uses empirical values for magnetic field strengths, base temperature and density, which are derived from observations of solar-like stars. We find that for rotation rates ~10 Omega_sun, Earths magnetosphere was substantially smaller than it is today, exhibiting a strong bow shock. As the sun spins down, the magnetopause standoff distance varies with Omega^{-0.27} for higher rotation rates (early ages, > 1.4 Omega_sun), and with Omega^{-2.04} for lower rotation rates (older ages, < 1.4 Omega_sun). This break is a result of the empirical properties adopted for the solar wind evolution. We also see a linear relationship between magnetopause distance and the thickness of the shock on the subsolar line for the majority of the evolution (< 10 Omega_sun). It is possible that a young fast rotating Sun would have had rotation rates as high as 30 to 50 Omega_sun. In these speculative scenarios, at 30 Omega_sun, a weak shock would have been formed, but for 50 Omega_sun, we find that no bow shock could be present around Earths magnetosphere. This implies that with the Sun continuing to spin down, a strong shock would have developed around our planet, and remained for most of the duration of the solar main sequence.
We explore the possibility of detecting Super Earths via transit timing variations with the satellite CoRoT.