Do you want to publish a course? Click here

A theoretical model for the separated flow around an accelerating flat plate using time-dependent self similarity

154   0   0.0 ( 0 )
 Added by Adam DeVoria
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model appropriate to the initial motion (2-3 chords of travel) of a flat-plate airfoil accelerating in an inviscid fluid. The separated flow structures are represented as vortex sheets in the conventional manner and similarity expansions locally applicable to the leading and trailing edges of the plate are developed. The topological character of vortex sheets is maintained rather than resorting to point vortex discretizations. Beyond this, there are two theoretical novelties to our approach as compared to previous studies. First, an expansion is applied to the attached outer flow rather than the vortex sheet circulations and positions. This allows the asymmetric effect of the sweeping component of the free-stream flow parallel to the plate to be built-in to the same governing equation as the singular-order flow. Second, we develop a time-dependent self similarity procedure that allows the modeling of more complex evolution of the flow structures. This is accomplished through an implicit time variation of the similarity variables. As a collective result, the predicted vortex dynamics and forces on the plate compare favorably to Navier-Stokes simulations. Lastly, the model is utilized to provide some new intuition about the separated flow at the leading edge.



rate research

Read More

Electrohydrodynamic (EHD) flow induced by planar corona discharge in the wall boundary layer region is investigated experimentally and via a multiphysics computational model. The EHD phenomena has many potential engineering applications, its optimization requires a mechanistic understanding of the ion and flow transport. The corona EHD actuator consisting of two electrodes located in the wall boundary layer creates an EHD driven wall jet. The applied voltage between the electrodes is varied and the resulting effects in the charge density and flow field are measured. Constant current hotwire anemometry is used to measure velocity profile. The airflow near the wall acts a jet and it reaches a maximum of 1.7 m/s with an energy conversion efficiency of ~2%. The velocity decreases sharply in the normal direction. Multiphysics numerical model couples ion transport equation and the Navier Stokes equations to solve for the spatiotemporal distribution of electric field, charge density and flow field. The numerical results match experimental data shedding new insights into mass, charge and momentum transport phenomena. The EHD driven flow can be applied to flow control strategies and design of novel particle collectors.
The kinematics of a gliding flat-plate with spanwise oscillation has been optimized to enhance the power efficiency by using Bayesian optimization method, in which the portfolio allocation framework consists of a Gaussian process probabilistic surrogate and a hybrid acquisition strategy. We tune three types of acquisition function in the optimization framework and assign three different balance parameters to each acquisition function. The design variables are set as the dimensionless oscillating amplitude and reduced frequency of the spanwise oscillation. The object function is to maximize the power factor to support a unit weight. The optimization results in a maximal power factor of 1.65 when the dimensionless oscillating amplitude and reduced frequency vary from 0 to 1. The features of the probabilistic response surface are also examined. There exists an optimal reduced frequency for the power efficiency at the oscillating amplitudes above 0.40. In addition, the higher power efficiency may be obtained by increasing the amplitude beyond 1.00.
For wall-bounded turbulent flows, Townsends attached eddy hypothesis proposes that the logarithmic layer is populated by a set of energetic and geometrically self-similar eddies. These eddies scale with a single length scale, their distance to the wall, while their velocity scale remains constant across their size range. To investigate the existence of such structures in fully developed turbulent pipe flow, stereoscopic particle image velocimetry measurements were performed in two parallel cross-sectional planes, spaced apart by a varying distance from 0 to 9.97$R$, for $Re_tau = 1310$, 2430 and 3810. The instantaneous turbulence structures are sorted by width using an azimuthal Fourier decomposition, allowing us to create a set of average eddy velocity profiles by performing an azimuthal alignment process. The resulting eddy profiles exhibit geometric self-similar behavior in the $(r,theta)$-plane for eddies with spanwise length scales ($lambda_theta/R$) spanning from 1.03 to 0.175. The streamwise similarity is further investigated using two-point correlations between the two planes, where the structures exhibit a self-similar behaviour with length scales ($lambda_theta/R$) ranging from approximately $0.88$ to $0.203$. The candidate structures thereby establish full three-dimensional geometrically self-similarity for structures with a volumetric ratio of $1:80$. Beside the geometric similarity, the velocity magnitude also exhibit self-similarity within these ranges. However, the velocity scale depends on eddy size, and follow the trends based on the scaling arguments proposed by cite{Perry1986}.
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_tau approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would require a camera and laser that moves with the flow, effectively `chasing eddies as they advect downstream.
88 - Luoqin Liu 2020
How to determine accurately and efficiently the aerodynamic forces of the aircraft in high-speed flow is one of great challenges in modern aerodynamics. In this Letter we propose a new similarity law for steady transonic-supersonic flow over thin bodies. The new similarity law is based on the local Mach number frozen principle. It depends on both the specific heat ratio and the free-stream Mach number. The new similarity law enables one to determine the lift and drag coefficients of the aircraft from that of a reference state which is more reachable. The validity of the new similarity law has been confirmed by the excellent agreement with numerical simulations of both two-dimensional airfoil flows and three-dimensional wing flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا