Do you want to publish a course? Click here

The Crab nebula variability at short timescales with the Cherenkov Telescope Array

342   0   0.0 ( 0 )
 Added by Enrique Mestre
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab Nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab Nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.



rate research

Read More

Surveys open up unbiased discovery space and generate legacy datasets of long-lasting value. One of the goals of imaging arrays of Cherenkov telescopes like CTA is to survey areas of the sky for faint very high energy gamma-ray (VHE) sources, especially sources that would not have drawn attention were it not for their VHE emission (e.g. the Galactic dark accelerators). More than half the currently known VHE sources are to be found in the Galactic plane. Using standard techniques, CTA can carry out a survey of the region |l|<60 degrees, |b|<2 degrees in 250 hr (1/4th the available time per year at one location) down to a uniform sensitivity of 3 mCrab (a Galactic Plane survey). CTA could also survey 1/4th of the sky down to a sensitivity of 20 mCrab in 370 hr of observing time (an all-sky survey), which complements well the surveys by the Fermi/LAT at lower energies and extended air shower arrays at higher energies. Observations in (non-standard) divergent pointing mode may shorten the all-sky survey time to about 100 hr with no loss in survey sensitivity. We present the scientific rationale for these surveys, their place in the multi-wavelength context, their possible impact and their feasibility. We find that the Galactic Plane survey has the potential to detect hundreds of sources. Implementing such a survey should be a major goal of CTA. Additionally, about a dozen blazars, or counterparts to Fermi/LAT sources, are expected to be detected by the all-sky survey, whose prime motivation is the search for extragalactic dark accelerators.
HAGAR is a system of seven Non-imaging Atmospheric Cherenkov Telescopes located at Hanle in the Ladakh region of the Indian Himalayas at an altitude of 4270 meters {it amsl}. Since 2008, we have observed the Crab Nebula to assess the performance of the HAGAR telescopes. We describe the analysis technique for the estimation of $gamma$-ray signal amidst cosmic ray background. The consolidated results spanning nine years of the Crab nebula observations show long term performance of the HAGAR telescopes. Based on about 219 hours of data, we report the detection of $gamma$-rays from the Crab Nebula at a significance level of about 20$sigma$, corresponding to a time averaged flux of (1.64$pm$0.09) $times10^{-10}$ photons cm$^{-2}$ sec$^{-1}$ above 230 GeV. Also, we perform a detailed study of possible systematic effects in our analysis method on data taken with the HAGAR telescopes.
Misaligned AGN (MAGNs), i.e., radio-loud AGNs with the jet not pointing directly towards us, represent a new class of GeV emitters revealed by the Fermi space telescope. Although they comprise only a small fraction of the high-energy sources, MAGNs are extremely interesting objects offering a different perspective to study high-energy processes with respect to blazars. The aim of this work is to evaluate the impact of the new-generation Cherenkov Telescope Array (CTA) on the MAGN class and propose possible observational strategies to optimize their detection.
The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standard candle in VHE and it is often used as unit for the IACTs sensitivity. The effect of different Crab Nebula emission models on the CTA integral sensitivity is evaluated, to emphasize the need for representative spectra of the CTA science targets in the evaluation of the OSA use cases. Using the most complete model as input to the OSA integral sensitivity, we obtain a significant detection of the Crab nebula (about 10% of flux) even for a 1000 second exposure, for an energy threshold less than 10 TeV.
The Cherenkov Telescope Array is a next generation ground-based gamma-ray observatory de- signed to detect photons in the 20 GeV to 300 TeV energy range. With a sensitivity improvement of up to one order of magnitude on the entire energy range with respect to currently operating facilities, coupled with significantly better angular resolution, the array will be used to address many open questions in high-energy astrophysics. In addition, CTA will explore the ultra-high energy (E >50 TeV) window with great sensitivity for the first time. CTA is expected to reveal a detailed picture of the Galactic plane at the highest energies, and to discover around one hundred new supernova remnants and many hundreds of pulsar wind nebulae, according to current population estimates. The ability of the observatory to resolve such a large number of Galactic sources is one of the challenges to be faced. In this paper, we will present the first simulated scan of the Galactic plane with a realistic observation strategy, with particular attention to the potential source confusion. We will also present prospects for morphological studies of extended sources, such as the young SNR RX J1713.7-39.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا