No Arabic abstract
Mechanical creep behaviors of natural gas hydrates (NGHs) are of importance for understanding mechanical instability of gas hydrate-bearing sediments on Earth. Limited by the experimental challenges, intrinsic creep mechanisms of nanocrystalline methane hydrates remain largely unknown yet at molecular scale. Herein, using large-scale molecular dynamics (MD) simulations, mechanical creep behaviors of nanocrystalline methane hydrates are investigated. It is revealed that mechanical creep responses are greatly dictated by internal microstructures of crystalline grain size and external conditions of temperature and static stress. Interestingly, a long steady-state creep is observed in nanocrystalline methane hydrates, which can be described by a modified constitutive Bird-Dorn-Mukherjee model. Microstructural analysis show that deformations of crystalline grains, grain boundary (GB) diffusion and GB sliding collectively govern the mechanical creep behaviors of nanocrystalline methane hydrates. Furthermore, structural transformation also appears important in their mechanical creep mechanisms. This study sheds new insights into understanding the mechanical creep scenarios of gas hydrates.
From soft polymeric gels to hardened cement paste, amorphous solids under constant load exhibit a pronounced time-dependent deformation called creep. The microscopic mechanism of such a phenomenon is poorly understood and constitutes a significant challenge in densely packed and chemically reactive granular systems. Both features are prominently present in hydrating cement pastes composed of calcium silicate hydrate (C-S-H) nanoparticles, whose packing density increases as a function of time, while cements hydration is taking place. Performing nano-indentation tests and porosity measurements on a large collection of samples at various hydration degrees, we show that the creep response of hydrating cement paste is mainly controlled by the inter-particle distance, and results from slippage between (C-S-H) nanoparticles. Our findings, which pave the way for the design of concrete with improved creep resistance, provide a unique insight into the microscopic mechanism underpinning the creep response in aging granular materials.
Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function of an external in plane magnetic field. This is understood as a consequence of the inversion asymmetry of the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. Numerous attempts have been made to explain these observations using creep theory, but, in doing so, these have not included all contributions to the domain wall energy or have introduced additional free parameters. In this article we present a theory for creep motion of chiral domain walls in the creep regime that includes the most important contributions to the domain-wall energy and does not introduce new free parameters beyond the usual parameters that are included in the micromagnetic energy. Furthermore, we present experimental measurements of domain wall velocities as a function of in-plane field that are well decribed by our model, and from which material properties such as the strength of the Dzyaloshinskii-Moriya interaction and the demagnetization field are extracted.
Many physical systems including lattices near structural phase transitions, glasses, jammed solids, and bio-polymer gels have coordination numbers that place them at the edge of mechanical instability. Their properties are determined by an interplay between soft mechanical modes and thermal fluctuations. In this paper we investigate a simple square-lattice model with a $phi^4$ potential between next-nearest-neighbor sites whose quadratic coefficient $kappa$ can be tuned from positive negative. We show that its zero-temperature ground state for $kappa <0$ is highly degenerate, and we use analytical techniques and simulation to explore its finite temperature properties. We show that a unique rhombic ground state is entropically favored at nonzero temperature at $kappa <0$ and that the existence of a subextensive number of floppy modes whose frequencies vanish at $kappa = 0$ leads to singular contributions to the free energy that render the square-to-rhombic transition first order and lead to power-law behavior of the shear modulus as a function of temperature. We expect our study to provide a general framework for the study of finite-temperature mechanical and phase behavior of other systems with a large number of floppy modes.
We present a single-quadrature feedback scheme able to overcome the conventional 3 dB limit on parametric squeezing. The method is experimentally demonstrated in a micromechanical system based on a cantilever with a magnetic tip. The cantilever is detected at low temperature by a SQUID susceptometer, while parametric pumping is obtained by modulating the magnetic field gradient at twice the cantilever frequency. A maximum squeezing of 11.5 dB and 11.3 dB is observed, respectively in the response to a sinusoidal test signal and in the thermomechanical noise. The maximum squeezing factor is limited only by the maximum achievable parametric modulation. The proposed technique can be used to squeeze one quadrature of a mechanical resonator below the quantum noise level, even without the need for a quantum limited detector.
We investigate the spatial coarse-graining of interactions in host-guest systems within the framework of the recently proposed Interacting Pair Approximation (IPA). Basically, the IPA method derives local effective interactions from the knowledge of the bivariate histograms of the number of sorbate molecules (occupancy) in a pair of neighboring subvolumes, taken at different values of the chemical potential. Here we extend the IPA approach to the case in which every subvolume is surrounded by more than one class of neighbors, and we apply it on two systems: methane on a single graphene layer and methane between two graphene layers, at several temperatures and sorbate densities. We obtain coarse-grained (CG) adsorption isotherms and reduced variances of the occupancy in a quantitative agreement with reference atomistic simulations. A quantitative matching is also obtained for the occupancy correlations between neighboring subvolumes, apart from the case of high sorbate densities at low temperature, where the matching is refined by pre-processing the histograms through a quantized bivariate Gaussian distribution model.