No Arabic abstract
Quite recently I have proposed a nonperturbative dynamical effective field model (DEFM) to quantitatively describe the dynamics of interacting ferrofluids. Its predictions compare very well with the results from simulations. In this paper I put the DEFM on firm theoretical ground by deriving it within the framework of dynamical density functional theory (DDFT), in which the relevant part of correlation-induced free energy is approximated by a function of the instantaneous magnetization. The DEFM is generalized to inhomogeneous finite-size samples for which the macroscopic and mesoscopic scale separation is nontrivial due to the presence of long-range dipole-dipole interactions. The demagnetizing field naturally emerges from microscopic considerations and is consistently accounted for. The resulting particle dynamics on the mesoscopic scale only involves macroscopically local quantities such as local magnetization and Maxwell field. Nevertheless, the local demagnetizing field essentially couples to magnetization at distant macroscopic locations. Thus, a two-scale parallel algorithm, involving information transfer between different macroscopic locations, can be applied to fully resolve particle rotational dynamics in an inhomogeneous sample. I also derive the DEFM for polydisperse ferrofluids, in which the dynamics of particles belonging to different species can be strongly coupled to each other. I discuss the underlying assumptions in obtaining a thermodynamically consistent polydisperse magnetization relaxation equation, which is of the same generic form as that for monodisperse ferrofluids. The theoretical advances presented in this paper are important for both qualitative understanding and quantitative modeling of ferrofluid dynamics.
The recently proposed dynamical effective field model (DEFM) is quantitatively accurate for describing dynamical magnetic response of ferrofluids. In paper I it is derived under the framework of dynamical density functional theory, via which the original ensemble of bare Brownian particles is mapped to an ensemble of dressed particles. However, it remains to clarify how the characteristic rotational relaxation time of a dressed particle, denoted by $tau_r$, is quantitatively related to that of a bare particle, denoted by $tau^0_r$. By building macro-micro connections via two different routes, I reveal that under some gentle assumptions $tau_r$ can be identified with the long-time rotational self-diffusion time. I further introduce two simple but useful integrated correlation factors, describing the effects of quasi-static (adiabatic) and dynamic (nonadiabatic) inter-particle correlations, respectively. In terms of both correlation factors I reformulate the dynamic magnetic susceptibility in an illuminating and elegant form. Remarkably, it shows that the macro-micro connection is established via two successive steps: a dynamical coarse-graining with nonadiabatic effects accounted for by the dynamic factor, followed by equilibrium statistical mechanical averaging captured by the static factor. Surprisingly, $tau_r/tau^0_r$ is found insensitive to changes of particle volume fraction. I provide a physical picture to explain it. Furthermore, an empirical formula is proposed to characterize the dependence of $tau_r/tau^0_r$ on dipole-dipole interaction strength. The DEFM supplemented with this formula leads to parameter-free predictions in good agreement with results from Brownian dynamics simulations. The theoretical developments presented in this paper may have important consequences to studies of ferrofluid dynamics in particular and other systems modelled by DDFTs in general.
By using theoretical analysis and molecular dynamics simulations, we investigate the structure of colloidal crystals formed by nonmagnetic microparticles (or magnetic holes) suspended in ferrofluids (called inverse ferrofluids), by taking into account the effect of polydispersity in size of the nonmagnetic microparticles. Such polydispersity often exists in real situations. We obtain an analytical expression for the interaction energy of monodisperse, bidisperse, and polydisperse inverse ferrofluids. Body-centered tetragonal (bct) lattices are shown to possess the lowest energy when compared with other sorts of lattices and thus serve as the ground state of the systems. Also, the effect of microparticle size distributions (namely, polydispersity in size) plays an important role in the formation of various kinds of structural configurations. Thus, it seems possible to fabricate colloidal crystals by choosing appropriate polydispersity in size.
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space-or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Huckel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory, and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
A theory of mechanical behaviour of the magneto-sensitive elastomers is developed in the framework of a linear elasticity approach. Using a regular rectangular lattice model, different spatial distributions of magnetic particles within a polymer matrix are considered: isotropic, chain-like and plane-like. It is shown that interaction between the magnetic particles results in the contraction of an elastomer along the homogeneous magnetic field. With increasing magnetic field the shear modulus for the shear deformation perpendicular to the magnetic field increases for all spatial distributions of magnetic particles. At the same time, with increasing magnetic field the Youngs modulus for tensile deformation along the magnetic field decreases for both chain-like and isotropic distributions of magnetic particles and increases for the plane-like distribution of magnetic particles.
The Barker-Henderson perturbation theory is a bedrock of liquid-state physics, providing quantitative predictions for the bulk thermodynamic properties of realistic model systems. However, this successful method has not been exploited for the study of inhomogeneous systems. We develop and implement a first-principles Barker-Henderson density functional, thus providing a robust and quantitatively accurate theory for classical fluids in external fields. Numerical results are presented for the hard-core Yukawa model in three dimensions. Our predictions for the density around a fixed test particle and between planar walls are in very good agreement with simulation data. The density profiles for the free liquid vapour interface show the expected oscillatory decay into the bulk liquid as the temperature is reduced towards the triple point, but with an amplitude much smaller than that predicted by the standard mean-field density functional.