Do you want to publish a course? Click here

Mean-Field Theory of Inhomogeneous Fluids

117   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English
 Authors S. M. Tschopp




Ask ChatGPT about the research

The Barker-Henderson perturbation theory is a bedrock of liquid-state physics, providing quantitative predictions for the bulk thermodynamic properties of realistic model systems. However, this successful method has not been exploited for the study of inhomogeneous systems. We develop and implement a first-principles Barker-Henderson density functional, thus providing a robust and quantitatively accurate theory for classical fluids in external fields. Numerical results are presented for the hard-core Yukawa model in three dimensions. Our predictions for the density around a fixed test particle and between planar walls are in very good agreement with simulation data. The density profiles for the free liquid vapour interface show the expected oscillatory decay into the bulk liquid as the temperature is reduced towards the triple point, but with an amplitude much smaller than that predicted by the standard mean-field density functional.



rate research

Read More

Three one-body profiles that correspond to local fluctuations in energy, in entropy, and in particle number are used to describe the equilibrium properties of inhomogeneous classical many-body systems. Local fluctuations are obtained from thermodynamic differentiation of the density profile or equivalently from average microscopic covariances. The fluctuation profiles follow from functional generators and they satisfy Ornstein-Zernike relations. Computer simulations reveal markedly different fluctuations in confined fluids with Lennard-Jones, hard sphere, and Gaussian core interactions.
We develop an elasto-plastic description for the transient dynamics prior to steady flow of athermally yielding materials. Our mean-field model not only reproduces the experimentally observed non-linear time dependence of the shear-rate response to an external shear-stress, but also allows for the determination of the different physical processes involved in the onset of the re-acceleration phase after the initial critical slowing down and a distinct well defined fluidization phase. The evidenced power-law dependence of the fluidization time on the distance of the applied to an age dependent static yield stress is not universal but strongly dependent on initial conditions.
337 - An-Chang Shi 2019
The self-consistent field theory (SCFT) is a powerful framework for the study of the phase behavior and structural properties of many-body systems. In particular, polymeric SCFT has been successfully applied to inhomogeneous polymeric systems such as polymer blends and block copolymer melts. The polymeric SCFT is commonly derived using field-theoretical techniques. Here we provide an alternative derivation of the SCFT equations and SCFT free energy functional using a variational principle. Numerical methods of solving the SCFT equations and applications of the SCFT are also briefly introduced.
Recently, the phenomena of streaming suppression and relocation of inhomogeneous miscible fluids under acoustic fields were explained using the hypothesis on mean Eulerian pressure. In this letter, we show that this hypothesis is unsound and any assumption on mean Eulerian pressure is needless. We present a theory of non-linear acoustics for inhomogeneous fluids from the first principles, which explains streaming suppression and acoustic relocation in both miscible and immiscible inhomogeneous fluids inside a microchannel. This theory predicts the relocation of higher impedance fluids to pressure nodes of the standing wave, which agrees with the recent experiments.
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا