Do you want to publish a course? Click here

On character varieties of singular manifolds

188   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we construct a lax monoidal Topological Quantum Field Theory that computes virtual classes, in the Grothendieck ring of algebraic varieties, of $G$-representation varieties over manifolds with conic singularities, which we will call nodefolds. This construction is valid for any algebraic group $G$, in any dimension and also in the parabolic setting. In particular, this TQFT allow us to compute the virtual classes of representation varieties over complex singular planar curves. In addition, in the case $G = mathrm{SL}_{2}(k)$, the virtual class of the associated character variety over a nodal closed orientable surface is computed both in the non-parabolic and in the parabolic scenarios.



rate research

Read More

Let G be a complex affine algebraic reductive group, and let K be a maximal compact subgroup of G. Fix elements h_1,...,h_m in K. For n greater than or equal to 0, let X (respectively, Y) be the space of equivalence classes of representations of the free group of m+n generators in G (respectively, K) such that for each i between 1 and m, the image of the i-th free generator is conjugate to h_i. These spaces are parabolic analogues of character varieties of free groups. We prove that Y is a strong deformation retraction of X. In particular, X and Y are homotopy equivalent. We also describe explicit examples relating X to relative character varieties.
We study the algebraic symplectic geometry of multiplicative quiver varieties, which are moduli spaces of representations of certain quiver algebras, introduced by Crawley-Boevey and Shaw, called multiplicative preprojective algebras. They are multiplicative analogues of Nakajima quiver varieties. They include character varieties of (open) Riemann surfaces fixing conjugacy class closures of the monodromies around punctures, when the quiver is crab-shaped. We prove that, under suitable hypotheses on the dimension vector of the representations, or the conjugacy classes of monodromies in the character variety case, the normalisations of such moduli spaces are symplectic singularities and that the existence of a symplectic resolution depends on a combinatorial condition on the quiver and the dimension vector. These results are analogous to those obtained by Bellamy and the first author in the ordinary quiver variety case, and for character varieties of closed Riemann surfaces. At the end of the paper, we outline some conjectural generalisations to moduli spaces of objects in 2-Calabi--Yau categories.
In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varieties are symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semi-simple case, where we show that a resolution exists if and only if either $g=1$ and $G$ is a product of special linear groups of any rank and copies of the group $PGL_2$, or if $g=2$ and $G = (SL_2)^m$ for some $m$.
We calculate the E-polynomials of certain twisted GL(n,C)-character varieties M_n of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type GL(n,F_q) and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL(n,C)-character variety. The calculation also leads to several conjectures about the cohomology of M_n: an explicit conjecture for its mixed Hodge polynomial; a conjectured curious Hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n = 2.
We prove some combinatorial conjectures extending those proposed in [13, 14]. The proof uses a vertex operator due to Nekrasov, Okounkov, and the first author [4] to obtain a gluing formula for the relevant generating series, essentially reducing the computation to the case of complex projective space with three punctures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا