Do you want to publish a course? Click here

Metrics also Disagree in the Low Scoring Range: Revisiting Summarization Evaluation Metrics

109   0   0.0 ( 0 )
 Added by Manik Bhandari
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In text summarization, evaluating the efficacy of automatic metrics without human judgments has become recently popular. One exemplar work concludes that automatic metrics strongly disagree when ranking high-scoring summaries. In this paper, we revisit their experiments and find that their observations stem from the fact that metrics disagree in ranking summaries from any narrow scoring range. We hypothesize that this may be because summaries are similar to each other in a narrow scoring range and are thus, difficult to rank. Apart from the width of the scoring range of summaries, we analyze three other properties that impact inter-metric agreement - Ease of Summarization, Abstractiveness, and Coverage. To encourage reproducible research, we make all our analysis code and data publicly available.



rate research

Read More

We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.
Conversational search systems, such as Google Assistant and Microsoft Cortana, enable users to interact with search systems in multiple rounds through natural language dialogues. Evaluating such systems is very challenging given that any natural language responses could be generated, and users commonly interact for multiple semantically coherent rounds to accomplish a search task. Although prior studies proposed many evaluation metrics, the extent of how those measures effectively capture user preference remains to be investigated. In this paper, we systematically meta-evaluate a variety of conversational search metrics. We specifically study three perspectives on those metrics: (1) reliability: the ability to detect actual performance differences as opposed to those observed by chance; (2) fidelity: the ability to agree with ultimate user preference; and (3) intuitiveness: the ability to capture any property deemed important: adequacy, informativeness, and fluency in the context of conversational search. By conducting experiments on two test collections, we find that the performance of different metrics varies significantly across different scenarios whereas consistent with prior studies, existing metrics only achieve a weak correlation with ultimate user preference and satisfaction. METEOR is, comparatively speaking, the best existing single-turn metric considering all three perspectives. We also demonstrate that adapted session-based evaluation metrics can be used to measure multi-turn conversational search, achieving moderate concordance with user satisfaction. To our knowledge, our work establishes the most comprehensive meta-evaluation for conversational search to date.
Natural Language Generation (NLG) evaluation is a multifaceted task requiring assessment of multiple desirable criteria, e.g., fluency, coherency, coverage, relevance, adequacy, overall quality, etc. Across existing datasets for 6 NLG tasks, we observe that the human evaluation scores on these multiple criteria are often not correlated. For example, there is a very low correlation between human scores on fluency and data coverage for the task of structured data to text generation. This suggests that the current recipe of proposing new automatic evaluation metrics for NLG by showing that they correlate well with scores assigned by humans for a single criteria (overall quality) alone is inadequate. Indeed, our extensive study involving 25 automatic evaluation metrics across 6 different tasks and 18 different evaluation criteria shows that there is no single metric which correlates well with human scores on all desirable criteria, for most NLG tasks. Given this situation, we propose CheckLists for better design and evaluation of automatic metrics. We design templates which target a specific criteria (e.g., coverage) and perturb the output such that the quality gets affected only along this specific criteria (e.g., the coverage drops). We show that existing evaluation metrics are not robust against even such simple perturbations and disagree with scores assigned by humans to the perturbed output. The proposed templates thus allow for a fine-grained assessment of automatic evaluation metrics exposing their limitations and will facilitate better design, analysis and evaluation of such metrics.
Modern summarization models generate highly fluent but often factually unreliable outputs. This motivated a surge of metrics attempting to measure the factuality of automatically generated summaries. Due to the lack of common benchmarks, these metrics cannot be compared. Moreover, all these methods treat factuality as a binary concept and fail to provide deeper insights into the kinds of inconsistencies made by different systems. To address these limitations, we devise a typology of factual errors and use it to collect human annotations of generated summaries from state-of-the-art summarization systems for the CNN/DM and XSum datasets. Through these annotations, we identify the proportion of different categories of factual errors in various summarization models and benchmark factuality metrics, showing their correlation with human judgment as well as their specific strengths and weaknesses.
Though generative dialogue modeling is widely seen as a language modeling task, the task demands an agent to have a complex natural language understanding of its input text to carry a meaningful interaction with an user. The automatic metrics used evaluate the quality of the generated text as a proxy to the holistic interaction of the agent. Such metrics were earlier shown to not correlate with the human judgement. In this work, we observe that human evaluation of dialogue agents can be inconclusive due to the lack of sufficient information for appropriate evaluation. The automatic metrics are deterministic yet shallow and human evaluation can be relevant yet inconclusive. To bridge this gap in evaluation, we propose designing a set of probing tasks to evaluate dialogue models. The hand-crafted tasks are aimed at quantitatively evaluating a generative dialogue models understanding beyond the token-level evaluation on the generated text. The probing tasks are deterministic like automatic metrics and requires human judgement in their designing; benefiting from the best of both worlds. With experiments on probe tasks we observe that, unlike RNN based architectures, transformer model may not be learning to comprehend the input text despite its generated text having higher overlap with the target text.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا