Do you want to publish a course? Click here

Hostility Detection Dataset in Hindi

269   0   0.0 ( 0 )
 Added by Md Shad Akhtar Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we present a novel hostility detection dataset in Hindi language. We collect and manually annotate ~8200 online posts. The annotated dataset covers four hostility dimensions: fake news, hate speech, offensive, and defamation posts, along with a non-hostile label. The hostile posts are also considered for multi-label tags due to a significant overlap among the hostile classes. We release this dataset as part of the CONSTRAINT-2021 shared task on hostile post detection.



rate research

Read More

Hostile content on social platforms is ever increasing. This has led to the need for proper detection of hostile posts so that appropriate action can be taken to tackle them. Though a lot of work has been done recently in the English Language to solve the problem of hostile content online, similar works in Indian Languages are quite hard to find. This paper presents a transfer learning based approach to classify social media (i.e Twitter, Facebook, etc.) posts in Hindi Devanagari script as Hostile or Non-Hostile. Hostile posts are further analyzed to determine if they are Hateful, Fake, Defamation, and Offensive. This paper harnesses attention based pre-trained models fine-tuned on Hindi data with Hostile-Non hostile task as Auxiliary and fusing its features for further sub-tasks classification. Through this approach, we establish a robust and consistent model without any ensembling or complex pre-processing. We have presented the results from our approach in CONSTRAINT-2021 Shared Task on hostile post detection where our model performs extremely well with 3rd runner up in terms of Weighted Fine-Grained F1 Score.
Humor recognition in conversations is a challenging task that has recently gained popularity due to its importance in dialogue understanding, including in multimodal settings (i.e., text, acoustics, and visual). The few existing datasets for humor are mostly in English. However, due to the tremendous growth in multilingual content, there is a great demand to build models and systems that support multilingual information access. To this end, we propose a dataset for Multimodal Multiparty Hindi Humor (M2H2) recognition in conversations containing 6,191 utterances from 13 episodes of a very popular TV series Shrimaan Shrimati Phir Se. Each utterance is annotated with humor/non-humor labels and encompasses acoustic, visual, and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for humor recognition in conversations. The empirical results on M2H2 dataset demonstrate that multimodal information complements unimodal information for humor recognition. The dataset and the baselines are available at http://www.iitp.ac.in/~ai-nlp-ml/resources.html and https://github.com/declare-lab/M2H2-dataset.
With language models being deployed increasingly in the real world, it is essential to address the issue of the fairness of their outputs. The word embedding representations of these language models often implicitly draw unwanted associations that form a social bias within the model. The nature of gendered languages like Hindi, poses an additional problem to the quantification and mitigation of bias, owing to the change in the form of the words in the sentence, based on the gender of the subject. Additionally, there is sparse work done in the realm of measuring and debiasing systems for Indic languages. In our work, we attempt to evaluate and quantify the gender bias within a Hindi-English machine translation system. We implement a modified version of the existing TGBI metric based on the grammatical considerations for Hindi. We also compare and contrast the resulting bias measurements across multiple metrics for pre-trained embeddings and the ones learned by our machine translation model.
The demo proposal presents a Phrase-based Sanskrit-Hindi (SaHiT) Statistical Machine Translation system. The system has been developed on Moses. 43k sentences of Sanskrit-Hindi parallel corpus and 56k sentences of a monolingual corpus in the target language (Hindi) have been used. This system gives 57 BLEU score.
Fake news causes significant damage to society.To deal with these fake news, several studies on building detection models and arranging datasets have been conducted. Most of the fake news datasets depend on a specific time period. Consequently, the detection models trained on such a dataset have difficulty detecting novel fake news generated by political changes and social changes; they may possibly result in biased output from the input, including specific person names and organizational names. We refer to this problem as textbf{Diachronic Bias} because it is caused by the creation date of news in each dataset. In this study, we confirm the bias, especially proper nouns including person names, from the deviation of phrase appearances in each dataset. Based on these findings, we propose masking methods using Wikidata to mitigate the influence of person names and validate whether they make fake news detection models robust through experiments with in-domain and out-of-domain data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا