Do you want to publish a course? Click here

Measuring and characterizing the line profile of HARPS with a laser frequency comb

77   0   0.0 ( 0 )
 Added by Fei Zhao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. We study the 2D spectral line profile of HARPS (High Accuracy Radial Velocity Planet Searcher), measuring its variation with position across the detector and with changing line intensity. The characterization of the line profile and its variations are important for achieving the precision of the wavelength scales of 10^{-10} or 3.0 cm/s necessary to detect Earth-twins in the habitable zone around solar-like stars. Methods. We used a laser frequency comb (LFC) with unresolved and unblended lines to probe the instrument line profile. We injected the LFC light (attenuated by various neutral density filters) into both the object and the reference fibres of HARPS, and we studied the variations of the line profiles with the line intensities. We applied moment analysis to measure the line positions, widths, and skewness as well as to characterize the line profile distortions induced by the spectrograph and detectors. Based on this, we established a model to correct for point spread function distortions by tracking the beam profiles in both fibres. Results. We demonstrate that the line profile varies with the position on the detector and as a function of line intensities. This is consistent with a charge transfer inefficiency (CTI) effect on the HARPS detector. The estimate of the line position depends critically on the line profile, and therefore a change in the line amplitude effectively changes the measured position of the lines, affecting the stability of the wavelength scale of the instrument. We deduce and apply the correcting functions to re-calibrate and mitigate this effect, reducing it to a level consistent with photon noise.

rate research

Read More

Using a turn-key Ti:sapphire femtosecond laser frequency comb, an off-the-shelf supercontinuum device, and Fabry-Perot mode filters, we report the generation of a 16 GHz frequency comb spanning a 90 nm band about a center wavelength of 566 nm. The light from this astro-comb is used to calibrate the HARPS-N astrophysical spectrograph for precision radial velocity measurements. The comb-calibrated spectrograph achieves a stability of $sim$ 1 cm/s within half an hour of averaging time. We also use the astro-comb as a reference for measurements of solar spectra obtained with a compact telescope, and as a tool to study intrapixel sensitivity variations on the CCD of the spectrograph.
156 - Michael T. Murphy 2012
Precise astronomical spectroscopic analyses routinely assume that individual pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons. Intra-pixel sensitivity (IPS) variations may already cause small systematic errors in, for example, studies of extra-solar planets via stellar radial velocities and cosmological variability in fundamental constants via quasar spectroscopy, but future experiments requiring velocity precisions approaching ~1 cm/s will be more strongly affected. Laser frequency combs have been shown to provide highly precise wavelength calibration for astronomical spectrographs, but here we show that they can also be used to measure IPS variations in astronomical CCDs in situ. We successfully tested a laser frequency comb system on the Ultra-High Resolution Facility spectrograph at the Anglo-Australian Telescope. By modelling the 2-dimensional comb signal recorded in a single CCD exposure, we find that the average IPS deviates by <8 per cent if it is assumed to vary symmetrically about the pixel centre. We also demonstrate that series of comb exposures with absolutely known offsets between them can yield tighter constraints on symmetric IPS variations from ~100 pixels. We discuss measurement of asymmetric IPS variations and absolute wavelength calibration of astronomical spectrographs and CCDs using frequency combs.
The discovery and characterization of exoplanets around nearby stars is driven by profound scientific questions about the uniqueness of Earth and our Solar System, and the conditions under which life could exist elsewhere in our Galaxy. Doppler spectroscopy, or the radial velocity (RV) technique, has been used extensively to identify hundreds of exoplanets, but with notable challenges in detecting terrestrial mass planets orbiting within habitable zones. We describe infrared RV spectroscopy at the 10 m Hobby-Eberly telescope that leverages a 30 GHz electro-optic laser frequency comb with nanophotonic supercontinuum to calibrate the Habitable Zone Planet Finder spectrograph. Demonstrated instrument precision <10 cm/s and stellar RVs approaching 1 m/s open the path to discovery and confirmation of habitable zone planets around M-dwarfs, the most ubiquitous type of stars in our Galaxy.
We discuss the laser frequency comb as a near infrared astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.
117 - Hanzhong Wu , Jun Ke , Panpan Wang 2021
In this work, we describe an updated version of single arm locking, and the noise amplification due to the nulls can be flexibly restricted with the help of optical frequency comb. We show that, the laser phase noise can be divided by a specific factor with optical frequency comb as the bridge. The analytical results indicate that, the peaks in the science band have been greatly reduced. The performance of the noise suppression shows that the total noise after arm locking can well satisfy the requirement of time delay interferometry, even with the free-running laser source. We also estimate the frequency pulling characteristics of the updated single arm locking, and the results suggest that the pulling rate can be tolerated, without the risk of mode hopping. Arm locking will be a valuable solution for the noise reduction in the space-borne GW detectors. We demonstrate that, with the precise control of the returned laser phase noise, the noise amplification in the science band can be efficiently suppressed based on the updated single arm locking. Not only our method allows the suppression of the peaks, the high gain, low pulling rate, it can also serve for full year, without the potential risk of locking failure due to the arm length mismatch. We finally discuss the unified demonstration of the updated single arm locking, where both the local and the returned laser phase noises can be tuned to generate the expected arm-locking sensor actually. Our work could provide a powerful method for the arm locking in the future space-borne GW detectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا