No Arabic abstract
The world is often stricken by catastrophic disasters. On-demand drone-mounted visible light communication (VLC) networks are suitable for monitoring disaster-stricken areas for leveraging disaster-response operations. The concept of an image sensor-based VLC has also attracted attention in the recent past for establishing stable links using unstably moving drones. However, existing works did not sufficiently consider the one-to-many image sensor-based VLC system. Thus, this paper proposes the concept of a one-to-many image sensor-based VLC between a camera and multiple drone-mounted LED lights with a drone-positioning algorithm to avoid interference among VLC links. Multiple drones are deployed on-demand in a disaster-stricken area to monitor the ground and continuously send image data to a camera with image sensor-based visible light communication (VLC) links. The proposed idea is demonstrated with the proof-of-concept (PoC) implemented with drones that are equipped with LED panels and a 4K camera. As a result, we confirmed the feasibility of the proposed system.
Autonomous drone racing is a challenging research problem at the intersection of computer vision, planning, state estimation, and control. We introduce AirSim Drone Racing Lab, a simulation framework for enabling fast prototyping of algorithms for autonomy and enabling machine learning research in this domain, with the goal of reducing the time, money, and risks associated with field robotics. Our framework enables generation of racing tracks in multiple photo-realistic environments, orchestration of drone races, comes with a suite of gate assets, allows for multiple sensor modalities (monocular, depth, neuromorphic events, optical flow), different camera models, and benchmarking of planning, control, computer vision, and learning-based algorithms. We used our framework to host a simulation based drone racing competition at NeurIPS 2019. The competition binaries are available at our github repository.
With the rapid advance of sophisticated control algorithms, the capabilities of drones to stabilise, fly and manoeuvre autonomously have dramatically improved, enabling us to pay greater attention to entire missions and the interaction of a drone with humans and with its environment during the course of such a mission. In this paper, we present an indoor office drone assistant that is tasked to run errands and carry out simple tasks at our laboratory, while given instructions from and interacting with humans in the space. To accomplish its mission, the system has to be able to understand verbal instructions from humans, and perform subject to constraints from control and hardware limitations, uncertain localisation information, unpredictable and uncertain obstacles and environmental factors. We combine and evaluate the dialogue, navigation, flight control, depth perception and collision avoidance components. We discuss performance and limitations of our assistant at the component as well as the mission level. A 78% mission success rate was obtained over the course of 27 missions.
First-person view drone racing has become a popular televised sport. However, very little is known about the perceptual and motor skills of professional drone racing pilots. A better understanding of these skills may inform path planning and control algorithms for autonomous multirotor flight. By using a real-world drone racing track and a large-scale position tracking system, we compare the drone racing performance of five professional and five beginner pilots. Results show that professional pilots consistently outperform beginner pilots by achieving faster lap times, higher velocity, and more efficiently executing the challenging maneuvers. Trajectory analysis shows that experienced pilots choose more optimal racing lines than beginner pilots. Our results provide strong evidence for a contribution of expertise to performances in real-world human-piloted drone racing. We discuss the implications of these results for future work on autonomous fast and agile flight. We make our data openly available.
Drone teleoperation is usually accomplished using remote radio controllers, devices that can be hard to master for inexperienced users. Moreover, the limited amount of information fed back to the user about the robots state, often limited to vision, can represent a bottleneck for operation in several conditions. In this work, we present a wearable interface for drone teleoperation and its evaluation through a user study. The two main features of the proposed system are a data glove to allow the user to control the drone trajectory by hand motion and a haptic system used to augment their awareness of the environment surrounding the robot. This interface can be employed for the operation of robotic systems in line of sight (LoS) by inexperienced operators and allows them to safely perform tasks common in inspection and search-and-rescue missions such as approaching walls and crossing narrow passages with limited visibility conditions. In addition to the design and implementation of the wearable interface, we performed a systematic study to assess the effectiveness of the system through three user studies (n = 36) to evaluate the users learning path and their ability to perform tasks with limited visibility. We validated our ideas in both a simulated and a real-world environment. Our results demonstrate that the proposed system can improve teleoperation performance in different cases compared to standard remote controllers, making it a viable alternative to standard Human-Robot Interfaces.
The use of delivery services is an increasing trend worldwide, further enhanced by the COVID pandemic. In this context, drone delivery systems are of great interest as they may allow for faster and cheaper deliveries. This paper presents a navigation system that makes feasible the delivery of parcels with autonomous drones. The system generates a path between a start and a final point and controls the drone to follow this path based on its localization obtained through GPS, 9DoF IMU, and barometer. In the landing phase, information of poses estimated by a marker (ArUco) detection technique using a camera, ultra-wideband (UWB) devices, and the drones software estimation are merged by utilizing an Extended Kalman Filter algorithm to improve the landing precision. A vector field-based method controls the drone to follow the desired path smoothly, reducing vibrations or harsh movements that could harm the transported parcel. Real experiments validate the delivery strategy and allow to evaluate the performance of the adopted techniques. Preliminary results state the viability of our proposal for autonomous drone delivery.