Do you want to publish a course? Click here

Low X-ray Efficiency of a Young High-B Pulsar PSR J1208-6238 Observed with Chandra

63   0   0.0 ( 0 )
 Added by Aya Bamba
 Publication date 2020
  fields Physics
and research's language is English
 Authors Aya Bamba




Ask ChatGPT about the research

High magnetic field (high-B) pulsars are key sources to bridge magnetars and conventional rotation powered pulsars, and thus to understand the origin of magnetar activities. We have estimated a tight upper-limit on the X-ray flux of one of the youngest high-B pulsars PSR J1208-6238 for the first time; a Chandra 10 ks observation shows no significant source. Depending on the emission models, the 3sigma upper-limit on the intrinsic 0.5-7 keV flux to (2.2-10.0)e-14 erg/s/cm2.



rate research

Read More

We report the discovery of PSR J1838-0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of -2.2e-11 Hz/s, implying a young characteristic age of 4970 years and a large spin-down power of 5.9e36 erg/s. Follow-up observations with radio telescopes detected no pulsations, thus PSR J1838-0537 appears radio-quiet as viewed from Earth. In September 2009 the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causing a relative increase in spin frequency of about 5.5e-6. After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in the LATs sky-survey observing pattern. The pulsars sky position is coincident with the spatially extended TeV source HESS J1841-055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841-055 contains a pulsar wind nebula powered by the pulsar.
The prototypical accretion-powered millisecond pulsar SAX J1808.4-3658 was observed simultaneously with Chandra-LETGS and RXTE-PCA near the peak of a transient outburst in November 2011. A single thermonuclear (type-I) burst was detected, the brightest yet observed by Chandra from any source, and the second-brightest observed by RXTE. We found no evidence for discrete spectral features during the burst; absorption edges have been predicted to be present in such bursts, but may require a greater degree of photospheric expansion than the rather moderate expansion seen in this event (a factor of a few). These observations provide a unique data set to study an X-ray burst over a broad bandpass and at high spectral resolution (lambda/delta-lambda=200-400). We find a significant excess of photons at high and low energies compared to the standard black body spectrum. This excess is well described by a 20-fold increase of the persistent flux during the burst. We speculate that this results from burst photons being scattered in the accretion disk corona. These and other recent observations of X-ray bursts point out the need for detailed theoretical modeling of the radiative and hydrodynamical interaction between thermonuclear X-ray bursts and accretion disks.
102 - H.H.Wang , J. Takata. 2018
PSR~J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011, October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and is probably originated from the pulsar wind nebula as reported by Hui et al (2015). The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ~4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.
The middle-aged PSR J0357+3205 is a nearby, radio-quiet, bright gamma-ray pulsar discovered by the Fermi mission. Our previous Chandra observation revealed a huge, very peculiar structure of diffuse X-ray emission, originating at the pulsar position and extending for > 9 on the plane of the sky. To better understand the nature of such a nebula, we have studied the proper motion of the parent pulsar. We performed relative astrometry on Chandra images of the field spanning a time baseline of 2.2 yr, unveiling a significant angular displacement of the pulsar counterpart, corresponding to a proper motion of 0.165+/-0.030 yr^(-1). At a distance of ~500 pc, the space velocity of the pulsar would be of ~390 km s^(-1) assuming no inclination with respect to the plane of the sky. The direction of the pulsar proper motion is perfectly aligned with the main axis of the X-ray nebula, pointing to a physical, yet elusive link between the nebula and the pulsar space velocity. No optical emission in the H_alpha line is seen in a deep image collected at the Gemini telescope, which implies that the interstellar medium into which the pulsar is moving is fully ionized.
XSS J12270-4859 is an X-ray binary associated with the Fermi LAT gamma-ray source 1FGL J1227.9-4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disc disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227-4853, at a dispersion measure of 43.4 pc cm$^{-3}$ associated with this source, using the GMRT at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824-2452I showing evidence of state switching between radio MSP and low-mass X-ray binary (LMXB) states. We report timing observations of PSR J1227-4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17 to 0.46 M$_{sun}$ suggests that this is a redback system. PSR J1227-4853 is eclipsed for about 40% of its orbit at 607 MHz; with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ~ 10$^{35}$ erg s$^{-1}$. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption, rather than dispersion smearing or scattering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا