Do you want to publish a course? Click here

Discovery of PSR J1227-4853: A transition from a low-mass X-ray binary to a redback millisecond pulsar

123   0   0.0 ( 0 )
 Added by Jayanta Roy Dr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

XSS J12270-4859 is an X-ray binary associated with the Fermi LAT gamma-ray source 1FGL J1227.9-4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disc disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227-4853, at a dispersion measure of 43.4 pc cm$^{-3}$ associated with this source, using the GMRT at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824-2452I showing evidence of state switching between radio MSP and low-mass X-ray binary (LMXB) states. We report timing observations of PSR J1227-4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17 to 0.46 M$_{sun}$ suggests that this is a redback system. PSR J1227-4853 is eclipsed for about 40% of its orbit at 607 MHz; with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ~ 10$^{35}$ erg s$^{-1}$. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption, rather than dispersion smearing or scattering.



rate research

Read More

123 - T. J. Johnson , P. S. Ray , J. Roy 2015
The 1.69 ms spin period of PSR J1227-4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270-4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5$sigma$) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227-4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227-4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.
We present a multi-wavelength study of the unidentified Fermi object, 3FGL J0212.1+5320. Within the 95% error ellipse, Chandra detects a bright X-ray source (i.e., F(0.5-7keV) = 1.4e-12 erg/cm^2/s), which has a low-mass optical counterpart (M < 0.4 Msun and T ~ 6000 K). A clear ellipsoidal modulation is shown in optical/infrared at 20.87 hours. The gamma-ray properties of 3FGL J0212.1+5320 are all consistent with that of a millisecond pulsar, suggesting that it is a gamma-ray redback millisecond pulsar binary with a low-mass companion filling > 64% of the Roche-lobe. If confirmed, it will be a redback binary with one of the longest orbital periods known. Spectroscopic data taken in 2015 from the Lijiang observatory show no evidence of strong emission lines, revealing that the accretion is currently inactive (the rotation-powered pulsar state). This is consistent with the low X-ray luminosities (Lx ~ 10^32 erg/s) and the possible X-ray modulation seen by Chandra and Swift. Considering that the X-ray luminosity and the high X-ray-to-gamma-ray flux ratio (8%) are both comparable to that of the two known gamma-ray transitional millisecond pulsars, we suspect that 3FGL J0212.1+5320 could be a potential target to search for future transition to the accretion active state.
We have discovered a new candidate redback millisecond pulsar binary near the center of the error ellipse of the bright unassociated Fermi-LAT $gamma$-ray source 4FGL J0940.3-7610. The candidate counterpart is a variable optical source that also shows faint X-ray emission. Optical photometric and spectroscopic monitoring with the SOAR telescope indicates the companion is a low-mass star in a 6.5-hr orbit around an invisible primary, showing both ellipsoidal variations and irradiation and consistent with the properties of known redback millisecond pulsar binaries. Given the orbital parameters, preliminary modeling of the optical light curves suggests an edge-on inclination and a low-mass ($sim 1.2$ - $1.4,M_{odot}$) neutron star, along with a secondary mass somewhat more massive than typical $gtrsim 0.4,M_{odot}$. This combination of inclination and secondary properties could make radio eclipses more likely for this system, explaining its previous non-discovery in radio pulsation searches. Hence 4FGL J0940.3-7610 may be a strong candidate for a focused search for $gamma$-ray pulsations to enable the future detection of a millisecond pulsar.
We present the discovery of a binary millisecond pulsar (MSP), PSR J2322$-$2650, found in the Southern section of the High Time Resolution Universe survey. This system contains a 3.5-ms pulsar with a $sim10^{-3}$ M$_{odot}$ companion in a 7.75-hour circular orbit. Follow-up observations at the Parkes and Lovell telescopes have led to precise measurements of the astrometric and spin parameters, including the period derivative, timing parallax, and proper motion. PSR J2322$-$2650 has a parallax of $4.4pm1.2$ mas, and is thus at an inferred distance of $230^{+90}_{-50}$ pc, making this system a candidate for optical studies. We have detected a source of $Rapprox26.4$ mag at the radio position in a single $R$-band observation with the Keck Telescope, and this is consistent with the blackbody temperature we would expect from the companion if it fills its Roche lobe. The intrinsic period derivative of PSR J2322$-$2650 is among the lowest known, $4.4(4)times10^{-22}$ s s$^{-1}$, implying a low surface magnetic field strength, $4.0(4)times10^7$ G. Its mean radio flux density of 160 $mu$Jy combined with the distance implies that its radio luminosity is the lowest ever measured, $0.008(5)$ mJy kpc$^2$. The inferred population of these systems in the Galaxy may be very significant, suggesting that this is a common MSP evolutionary path.
The Fermi Large Area Telescope gamma-ray source 3FGL J2039.6$-$5618 contains a periodic optical and X-ray source that was predicted to be a redback millisecond pulsar (MSP) binary system. However, the conclusive identification required the detection of pulsations from the putative MSP. To better constrain the orbital parameters for a directed search for gamma-ray pulsations, we obtained new optical light curves in 2017 and 2018, which revealed long-term variability from the companion star. The resulting orbital parameter constraints were used to perform a targeted gamma-ray pulsation search using the Einstein@Home distributed volunteer computing system. This search discovered pulsations with a period of 2.65 ms, confirming the source as a binary MSP now known as PSR J2039$-$5617. Optical light curve modelling is complicated, and likely biased, by asymmetric heating on the companion star and long-term variability, but we find an inclination $i > 60{deg}$, for a low pulsar mass between $1.1 M_{odot} < M_{rm psr} < 1.6 M_{odot}$ and a companion mass of 0.15--0.22 $M_{odot}$, confirming the redback classification. Timing the gamma-ray pulsations also revealed significant variability in the orbital period, which we find to be consistent with quadrupole moment variations in the companion star, suggestive of convective activity. We also find that the pulsed flux is modulated at the orbital period, potentially due to inverse Compton scattering between high-energy leptons in the pulsar wind and the companion stars optical photon field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا