Do you want to publish a course? Click here

The surface sensitivity of rubble-pile asteroids during a distant planetary encounter: Influence of asteroid shape elongation

117   0   0.0 ( 0 )
 Added by Yaeji Kim
 Publication date 2020
  fields Physics
and research's language is English
 Authors Yaeji Kim




Ask ChatGPT about the research

We numerically investigate how an asteroids elongation controls the sensitivity of its surface to tidal effects during a distant planetary encounter beyond the Roche limit. We analyze the surface slope and its variation by considering the shape elongation, as well as the spin period and orbital conditions. A more elongated asteroid tends to have a higher slope variation, while there may not be a monotonic increase of the total area having such a variation



rate research

Read More

The rubble pile spin barrier is an upper limit on the rotation rate of asteroids larger than ~200-300 m. Among thousands of asteroids with diameters larger than ~300 m, only a handful of asteroids are known to rotate faster than 2.0 h, all are in the sub-km range (<=0.6 km). Here we present photometric measurements suggesting that (60716) 2000 GD65, an S-complex, inner-main belt asteroid with a relatively large diameter of 2.3 +0.6-0.7 km, completes one rotation in 1.9529+-0.0002 h. Its unique diameter and rotation period allow us to examine scenarios about asteroid internal structure and evolution: a rubble pile bound only by gravity; a rubble-pile with strong cohesion; a monolithic structure; an asteroid experiencing mass shedding; an asteroid experiencing YORP spin-up/down; and an asteroid with a unique octahedron shape results with a four-peak lightcurve and a 3.9 h period. We find that the most likely scenario includes a lunar-like cohesion that can prevent (60716) 2000 GD65 from disrupting without requiring a monolithic structure or a unique shape. Due to the uniqueness of (60716) 2000 GD65, we suggest that most asteroids typically have smaller cohesion than that of lunar regolith.
In this work, we employ a soft-sphere discrete element method with a cohesion implementation to model the dynamical process of sub-km-sized cohesive rubble piles under continuous spinup. The dependencies of critical spin periods $T_c$ on several material parameters for oblate rubble piles with different bulk diameters $D$ are explored. Our numerical simulations show that both the increase of interparticle cohesion and particle shape parameter in our model can strengthen the bodies, especially for the smaller ones. In addition, we find there exists some critical diameter $D_{cri,rho}$ at which the variation trend of $T_c$ with the bulk density $rho$ reverses. Though a greater static friction coefficient $mu_S$ can strengthen the body, this effect attains a minimum at a critical diameter $D_{cri,phi}$ close to $D_{cri,rho}$. The continuum theory (analytical method) is used for comparison and two equivalent critical diameters are obtained. The numerical results were fitted with the analytical method and the ratio of the interparticle cohesion $c$ to the bulk cohesion $C$ is estimated to be roughly 88.3. We find this ratio keeps constant for different $c$ and $rho$, while it strongly depends on the friction angle $phi$. Also, our numerical results further show that the dependency of $T_c$ on $phi$ is opposite from that predicted by the continuum theory when $D$ < $D_{cri,phi}$. Finally, we find that the two critical diameters happen to be close to the diameter when the mean normal stress of the body equals zero, which is the separation between the compressive regime and the tensile regime.
Exploration of asteroid (101955) Bennu by the OSIRIS-REx mission has provided an in-depth look at this rubble-pile near-Earth asteroid. In particular, the measured gravity field and the detailed shape model of Bennu indicate significant heterogeneities in its interior structure, compatible with a lower density at its center. Here we combine gravity inversion methods with a statistical rubble-pile model to determine the density and size-frequency distribution (SFD) index of the rubble that constitutes Bennu. The best-fitting models indicate that the SFD of the interior is consistent with that observed on the surface, with a cumulative SFD index of approximately $-2.9$. The rubble bulk density is approximately $1.35$ g/cm$^3$, corresponding to a $12$% macro-porosity. We find the largest rubble particle to be approximately $145$ m, whereas the largest void is approximately $10$ m.
Asteroid (162173) Ryugu is the target object of Hayabusa2, an asteroid exploration and sample return mission led by Japan Aerospace Exploration Agency (JAXA). Ground-based observations indicate that Ryugu is a C-type near-Earth asteroid with a diameter of less than 1 km, but the knowledge of its detailed properties is still very limited. This paper summarizes our best understanding of the physical and dynamical properties of Ryugu based on remote sensing and theoretical modeling. This information is used to construct a design reference model of the asteroid that is used for formulation of mission operations plans in advance of asteroid arrival. Particular attention is given to the surface properties of Ryugu that are relevant to sample acquisition. This reference model helps readers to appropriately interpret the data that will be directly obtained by Hayabusa2 and promotes scientific studies not only for Ryugu itself and other small bodies but also for the Solar System evolution that small bodies shed light on.
We report on the results of a systematic search for associated asteroid families for all active asteroids known to date. We find that 10 out of 12 main-belt comets (MBCs) and 5 out of 7 disrupted asteroids are linked with known or candidate families, rates that have ~0.1% and ~6% probabilities, respectively, of occurring by chance, given an overall family association rate of 37% for asteroids in the inner solar system. We find previously unidentified family associations between 238P/Read and the candidate Gorchakov family, 311P/PANSTARRS and the candidate Behrens family, 324P/La Sagra and the Alauda family, 354P/LINEAR and the Baptistina family, P/2013 R3-B (Catalina-PANSTARRS) and the Mandragora family, P/2015 X6 (PANSTARRS) and the Aeolia family, P/2016 G1 (PANSTARRS) and the Adeona family, and P/2016 J1-A/B (PANSTARRS) and the Theobalda family. All MBCs with family associations belong to families that contain asteroids with primitive taxonomic classifications and low average reported albedos (pV_avg < 0.10), while disrupted asteroids with family associations belong to families that contain asteroids that span wider ranges of taxonomic types and average reported albedos (0.06 < pV_avg < 0.25). These findings are consistent with MBC activity being closely correlated to composition (i.e., whether an object is likely to contain ice), while disrupted asteroid activity is not as sensitive to composition. Given our results, we describe a sequence of processes by which the formation of young asteroid families could lead to the production of present-day MBCs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا