Do you want to publish a course? Click here

Generation of gravitational waves and tidal disruptions in clumpy galaxies

62   0   0.0 ( 0 )
 Added by Boris Pestoni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Obtaining a better understanding of intermediate-mass black holes (IMBHs) is crucial, as their properties could shed light on the origin and growth of their supermassive counterparts. Massive star-forming clumps, which are present in a large fraction of massive galaxies at $z sim$ 1-3, are amongst the venues wherein IMBHs could reside. We perform a series of Fokker-Planck simulations to explore the occurrence of tidal disruption (TD) and gravitational wave (GW) events about an IMBH in a massive star-forming clump, modelling the latter so that its mass ($10^8 ,{rm M}_{odot}$) and effective radius ($100$ pc) are consistent with the properties of both observed and simulated clumps. We find that the TD and GW event rates are in the ranges $10^{-6}$-$10^{-5}$ and $10^{-8}$-$10^{-7}$ yr$^{-1}$, respectively, depending on the assumptions for the initial inner density profile of the system ($rho propto r^{-2}$ or $propto r^{-1}$) and the initial mass of the central IMBH ($10^5$ or $10^3,{rm M}_{odot}$). By integrating the GW event rate over $z$ = 1-3, we expect that the Laser Interferometer Space Antenna will be able to detect $sim$2 GW events per yr coming from these massive clumps; the intrinsic rate of TD events from these systems amounts instead to a few $10^3$ per yr, a fraction of which will be observable by, e.g. the Square Kilometre Array and the Advanced Telescope for High Energy Astrophysics. In conclusion, our results support the idea that the forthcoming GW and electromagnetic facilities may have the unprecedented opportunity of unveiling the lurking population of IMBHs.



rate research

Read More

We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed study of the effects of fitting a pulsar timing model to non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA. We place a sky-averaged constraint on the merger rate of nearby ($z < 0.6$) black-hole binaries in the early phases of coalescence with a chirp mass of $10^{10},rmn{M}_odot$ of less than one merger every seven years. The prospects for future gravitational-wave astronomy of this type with the proposed Square Kilometre Array telescope are discussed.
In this paper we show in a covariant and gauge invariant way that in general relativity, tidal forces are actually a hidden form of gravitational waves. This must be so because gravitational effects cannot occur faster than the speed of light. Any two body gravitating system, where the bodies are orbiting around each other, may generate negligible gravitational waves, but it is via these waves that non-negligible tidal forces (causing shape distortions) act on these bodies. Although the tidal forces are caused by the electric part of the Weyl tensor, we transparently show that some small time varying magnetic part of the Weyl tensor with non zero curl must be present in the system that mediates the tidal forces via gravitational wave type effects. The outcome is a new test of whether gravitational effects propagate at the speed of light.
We present a new strategy to optimise the electromagnetic follow-up of gravitational wave triggers. This method is based on the widely used galaxy targeting approach where we add the stellar mass of galaxies in order to prioritise the more massive galaxies. We crossmatched the GLADE galaxy catalog with the AllWISE catalog up to 400Mpc with an efficiency of $sim$93%, and derived stellar masses using a stellar-to-mass ratio using the WISE1 band luminosity. We developed a new grade to rank galaxies combining their 3D localisation probability associated to the gravitational wave event with the new stellar mass information. The efficiency of this new approach is illustrated with the GW170817 event, which shows that its host galaxy, NGC4993, is ranked at the first place using this new method. The catalog, named Mangrove, is publicly available and the ranking of galaxies is automatically provided through a dedicated web site for each gravitational wave event.
Assessing the probability that two or more gravitational waves (GWs) are lensed images of the same source requires an understanding of the image properties, including their relative phase shifts in strong lensing (SL). For non-precessing, circular binaries dominated by quadrupole radiation these phase shifts are degenerate with either a shift in the coalescence phase or a detector and inclination dependent shift in the orientation angle. This degeneracy is broken by the presence of higher harmonic modes with $|m| e 2$ in the former and $|m| e l$ in the latter. Precession or eccentricity will also break this degeneracy. This implies that lensed GWs will not necessarily be consistent with (unlensed) predictions from general relativity (GR). Therefore, unlike EM lensing, GW SL can lead to images with an observable modified phase evolution. However, for a wide parameter space, the lensed waveform is similar enough to an unlensed waveform that detection pipelines will still find it. For present detectors, templates with a shifted detector-dependent orientation angle have SNR differences of less than $1%$ for mass ratios up to 0.1, and less than $5%$ for precession parameters up to 0.5 and eccentricities up to 0.4 at 20Hz. The mismatch is lower than $10%$ with the alternative detector-independent coalescence phase shift. Nonetheless, for a loud enough source, even with one image it may be possible to directly identify it as a SL image from its non-GR waveform. In more extreme cases, lensing may lead to considerable distortions, and the lensed GWs may be undetected with current searches. Nevertheless, an exact template with a phase shift in Fourier space can always be constructed to fit any lensed GW. We conclude that an optimal search strategy would incorporate phase information in all stages, with an exact treatment in the final assessment of the probability of multiple lensed events.
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا