No Arabic abstract
Ultracold atoms in optical lattices offer a great promise to generate entangled states for scalable quantum information processing owing to the inherited long coherence time and controllability over a large number of particles. We report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Employing a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated by microwave pulses with near unitary fidelities. Spin entanglement of the two atoms in the double wells of the superlattice is generated via dynamical evolution governed by spin superexchange. By observing collisional atom loss with in-situ absorption imaging we measure spin correlations of atoms inside the double wells and obtain the lower boundary of entanglement fidelity as $0.79pm0.06$, and the violation of a Bells inequality with $S=2.21pm 0.08$. The above results represent an essential step towards scalable quantum computation with ultracold atoms in optical lattices.
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.
We present an analysis of Bose-Fermi mixtures in optical lattices for the case where the lattice potential of the fermions is tilted and the bosons (in the superfluid phase) are described by Bogoliubov phonons. It is shown that the Bogoliubov phonons enable hopping transitions between fermionic Wannier-Stark states; these transitions are accompanied by energy dissipation into the superfluid and result in a net atomic current along the lattice. We derive a general expression for the drift velocity of the fermions and find that the dependence of the atomic current on the lattice tilt exhibits negative differential conductance and phonon resonances. Numerical simulations of the full dynamics of the system based on the time-evolving block decimation algorithm reveal that the phonon resonances should be observable under the conditions of a realistic measuring procedure.
Moir{e} superlattices in twisted bilayer graphene and transition-metal dichalcogenides have emerged as a powerful tool for engineering novel band structures and quantum phases of two-dimensional quantum materials. Here we investigate Moir{e} physics emerging from twisting two independent hexagonal optical lattices of atomic (pseudo-)spin states (instead of bilayers), which exhibits remarkably different physics from twisted bilayer graphene. We employ a momentum-space tight-binding calculation that includes all range real-space tunnelings, and show that all twist angles $theta lesssim 6^{circ }$ can become magic that support gapped flat bands. Due to greatly enhanced density of states near the flat bands, the system can be driven to superfluid by weak attractive interaction. Strikingly, the superfluid phase corresponds to a Larkin-Ovchinnikov state with finite momentum pairing, resulting from the interplay between flat bands and inter-spin interactions in the unique single-layer spin-twisted lattice. Our work may pave the way for exploring novel quantum phases and twistronics in cold atomic systems.
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavior of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of $1.9^{+1.7}_{-0.4} times 10^{-3} k_{text{B}}$. The atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993 $pm$ 0.001 for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and may enable the creation of large-scale entanglement
Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two lattice sites in a one-dimensional Bose-Hubbard chain which features both local spin- and particle-number fluctuations. Starting with an initially localized spin impurity, we observe an outwards propagating entanglement wave and show quantitatively how entanglement in the spin sector rapidly decreases with increasing particle-number fluctuations in the chain.