Do you want to publish a course? Click here

Deep learning for CVA computations of large portfolios of financial derivatives

100   0   0.0 ( 0 )
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a neural network-based method for CVA computations of a portfolio of derivatives. In particular, we focus on portfolios consisting of a combination of derivatives, with and without true optionality, textit{e.g.,} a portfolio of a mix of European- and Bermudan-type derivatives. CVA is computed, with and without netting, for different levels of WWR and for different levels of credit quality of the counterparty. We show that the CVA is overestimated with up to 25% by using the standard procedure of not adjusting the exercise strategy for the default-risk of the counterparty. For the Expected Shortfall of the CVA dynamics, the overestimation was found to be more than 100% in some non-extreme cases.



rate research

Read More

Financial markets are exposed to systemic risk, the risk that a substantial fraction of the system ceases to function and collapses. Systemic risk can propagate through different mechanisms and channels of contagion. One important form of financial contagion arises from indirect interconnections between financial institutions mediated by financial markets. This indirect interconnection occurs when financial institutions invest in common assets and is referred to as overlapping portfolios. In this work we quantify systemic risk from indirect interconnections between financial institutions. Having complete information of security holdings of major Mexican financial intermediaries and the ability to uniquely identify securities in their portfolios, allows us to represent the Mexican financial system as a bipartite network of securities and financial institutions. This makes it possible to quantify systemic risk arising from overlapping portfolios. We show that focusing only on direct exposures underestimates total systemic risk levels by up to 50%. By representing the financial system as a multi-layer network of direct exposures (default contagion) and indirect exposures (overlapping portfolios) we estimate the mutual influence of different channels of contagion. The method presented here is the first objective data-driven quantification of systemic risk on national scales that includes overlapping portfolios.
The paper examines the potential of deep learning to support decisions in financial risk management. We develop a deep learning model for predicting whether individual spread traders secure profits from future trades. This task embodies typical modeling challenges faced in risk and behavior forecasting. Conventional machine learning requires data that is representative of the feature-target relationship and relies on the often costly development, maintenance, and revision of handcrafted features. Consequently, modeling highly variable, heterogeneous patterns such as trader behavior is challenging. Deep learning promises a remedy. Learning hierarchical distributed representations of the data in an automatic manner (e.g. risk taking behavior), it uncovers generative features that determine the target (e.g., traders profitability), avoids manual feature engineering, and is more robust toward change (e.g. dynamic market conditions). The results of employing a deep network for operational risk forecasting confirm the feature learning capability of deep learning, provide guidance on designing a suitable network architecture and demonstrate the superiority of deep learning over machine learning and rule-based benchmarks.
The presence of non linear instruments is responsible for the emergence of non Gaussian features in the price changes distribution of realistic portfolios, even for Normally distributed risk factors. This is especially true for the benchmark Delta Gamma Normal model, which in general exhibits exponentially damped power law tails. We show how the knowledge of the model characteristic function leads to Fourier representations for two standard risk measures, the Value at Risk and the Expected Shortfall, and for their sensitivities with respect to the model parameters. We detail the numerical implementation of our formulae and we emphasizes the reliability and efficiency of our results in comparison with Monte Carlo simulation.
Let $ X_{lambda_1},ldots,X_{lambda_n}$ be a set of dependent and non-negative random variables share a survival copula and let $Y_i= I_{p_i}X_{lambda_i}$, $i=1,ldots,n$, where $I_{p_1},ldots,I_{p_n}$ be independent Bernoulli random variables independent of $X_{lambda_i}$s, with ${rm E}[I_{p_i}]=p_i$, $i=1,ldots,n$. In actuarial sciences, $Y_i$ corresponds to the claim amount in a portfolio of risks. This paper considers comparing the smallest claim amounts from two sets of interdependent portfolios, in the sense of usual and likelihood ratio orders, when the variables in one set have the parameters $lambda_1,ldots,lambda_n$ and $p_1,ldots,p_n$ and the variables in the other set have the parameters $lambda^{*}_1,ldots,lambda^{*}_n$ and $p^*_1,ldots,p^*_n$. Also, we present some bounds for survival function of the smallest claim amount in a portfolio. To illustrate validity of the results, we serve some applicable models.
Let $ X_{lambda_1},ldots,X_{lambda_n}$ be dependent non-negative random variables and $Y_i=I_{p_i} X_{lambda_i}$, $i=1,ldots,n$, where $I_{p_1},ldots,I_{p_n}$ are independent Bernoulli random variables independent of $X_{lambda_i}$s, with ${rm E}[I_{p_i}]=p_i$, $i=1,ldots,n$. In actuarial sciences, $Y_i$ corresponds to the claim amount in a portfolio of risks. In this paper, we compare the largest claim amounts of two sets of interdependent portfolios, in the sense of usual stochastic order, when the variables in one set have the parameters $lambda_1,ldots,lambda_n$ and $p_1,ldots,p_n$ and the variables in the other set have the parameters $lambda^{*}_1,ldots,lambda^{*}_n$ and $p^*_1,ldots,p^*_n$. For illustration, we apply the results to some important models in actuary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا