No Arabic abstract
Deep neural networks and huge language models are becoming omnipresent in natural language applications. As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settings. Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing. After a discussion about the different dimensions of data availability, we give a structured overview of methods that enable learning when training data is sparse. This includes mechanisms to create additional labeled data like data augmentation and distant supervision as well as transfer learning settings that reduce the need for target supervision. A goal of our survey is to explain how these methods differ in their requirements as understanding them is essential for choosing a technique suited for a specific low-resource setting. Further key aspects of this work are to highlight open issues and to outline promising directions for future research.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
Few-shot natural language processing (NLP) refers to NLP tasks that are accompanied with merely a handful of labeled examples. This is a real-world challenge that an AI system must learn to handle. Usually we rely on collecting more auxiliary information or developing a more efficient learning algorithm. However, the general gradient-based optimization in high capacity models, if training from scratch, requires many parameter-updating steps over a large number of labeled examples to perform well (Snell et al., 2017). If the target task itself cannot provide more information, how about collecting more tasks equipped with rich annotations to help the model learning? The goal of meta-learning is to train a model on a variety of tasks with rich annotations, such that it can solve a new task using only a few labeled samples. The key idea is to train the models initial parameters such that the model has maximal performance on a new task after the parameters have been updated through zero or a couple of gradient steps. There are already some surveys for meta-learning, such as (Vilalta and Drissi, 2002; Vanschoren, 2018; Hospedales et al., 2020). Nevertheless, this paper focuses on NLP domain, especially few-shot applications. We try to provide clearer definitions, progress summary and some common datasets of applying meta-learning to few-shot NLP.
In the NLP community, recent years have seen a surge of research activities that address machines ability to perform deep language understanding which goes beyond what is explicitly stated in text, rather relying on reasoning and knowledge of the world. Many benchmark tasks and datasets have been created to support the development and evaluation of such natural language inference ability. As these benchmarks become instrumental and a driving force for the NLP research community, this paper aims to provide an overview of recent benchmarks, relevant knowledge resources, and state-of-the-art learning and inference approaches in order to support a better understanding of this growing field.
As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for natural language processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term textit{interpretability} and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are divided into three categories: 1) explaining the models predictions through related input features; 2) explaining through natural language explanation; 3) probing the hidden states of models and word representations.