Do you want to publish a course? Click here

Runaway stars masquerading as star formation in galactic outskirts

104   0   0.0 ( 0 )
 Added by Eric Andersson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the outskirts of nearby spiral galaxies, star formation is observed in extremely low gas surface densities. Star formation in these regions, where the interstellar medium is dominated by diffuse atomic hydrogen, is difficult to explain with classic star formation theories. In this letter, we introduce runaway stars as an explanation for this observation. Runaway stars, produced by collisional dynamics in young stellar clusters, can travel kiloparsecs during their main-sequence lifetime. Using galactic-scale hydrodynamic simulations including a treatment of individual stars, we demonstrate that this mechanism enables the ejection of young massive stars into environments where the gas is not dense enough to trigger star formation. This results in the appearance of star formation in regions where it ought to be impossible. We conclude that runaway stars are a contributing, if not dominant, factor to the observations of star formation in the outskirts of spiral galaxies.



rate research

Read More

Moderately strong shocks arise naturally when two subclusters merge. For instance, when a smaller subcluster falls into the gravitational potential of a more massive cluster, a bow shock is formed and moves together with the subcluster. After pericenter passage, however, the subcluster is decelerated by the gravity of the main cluster, while the shock continues moving away from the cluster center. These shocks are considered as promising candidates for powering radio relics found in many clusters. The aim of this paper is to explore the fate of such shocks when they travel to the cluster outskirts, far from the place where the shocks were initiated. In a uniform medium, such a runaway shock should weaken with distance. However, as shocks move to large radii in galaxy clusters, the shock is moving down a steep density gradient that helps the shock to maintain its strength over a large distance. Observations and numerical simulations show that, beyond $R_{500}$, gas density profiles are as steep as, or steeper than, $sim r^{-3}$, suggesting that there exists a Habitable zone for moderately strong shocks in cluster outskirts where the shock strength can be maintained or even amplified. A characteristic feature of runaway shocks is that the strong compression, relative to the initial state, is confined to a narrow region just behind the shock. Therefore, if such a shock runs over a region with a pre-existing population of relativistic particles, then the boost in radio emissivity, due to pure adiabatic compression, will also be confined to a narrow radial shell.
We investigate the triggering of star formation in clouds that form in Galactic scale flows as the ISM passes through spiral shocks. We use the Lagrangian nature of SPH simulations to trace how the star forming gas is gathered into self-gravitating cores that collapse to form stars. Large scale flows that arise due to Galactic dynamics create shocks of order 30 km/s that compress the gas and form dense clouds $(n> $several $times 10^2$ cm$^{-3}$) in which self-gravity becomes relevant. These large-scale flows are necessary for creating the dense physical conditions for gravitational collapse and star formation. Local gravitational collapse requires densities in excess of $n>10^3$ cm$^{-3}$ which occur on size scales of $approx 1$ pc for low-mass star forming regions ($M<100 M_{odot}$), and up to sizes approaching 10 pc for higher-mass regions ($M>10^3 M_{odot}$). Star formation in the 250 pc region lasts throughout the 5 Myr timescale of the simulation with a star formation rate of $approx 10^{-1} M_{odot}$ yr$^{-1}$ kpc$^{-2}$. In the absence of feedback, the efficiency of the star formation per free-fall time varies from our assumed 100 % at our sink accretion radius to values of $< 10^{-3}$ at low densities.
Several stars detected moving at velocities near to or exceeding the Galactic escape speed likely originated in the Milky Way disc. We quantitatively explore the `binary supernova scenario hypothesis, wherein these `hyper-runaway stars are ejected at large peculiar velocities when their close, massive binary companions undergo a core-collapse supernova and the binary is disrupted. We perform an extensive suite of binary population synthesis simulations evolving massive systems to determine the assumptions and parameters which most impact the ejection rate of fast stars. In a simulation tailored to eject fast stars, we find the most likely hyper-runaway star progenitor binary is composed of a massive ($sim$$30,mathrm{M_{odot}}$) primary and a $sim$$3-4,mathrm{M_{odot}}$ companion on an orbital period that shrinks to $lesssim$1 day prior to the core collapse following a common envelope phase. The black hole remnant formed from the primary must receive a natal kick $gtrsim$1000 $mathrm{km s^{-1}}$ to disrupt the binary and eject the companion at a large velocity. We compare the fast stars produced in these simulations to a contemporary census of early-type Milky Way hyper-runaway star candidates. We find that these rare objects may be produced in sufficient number only when poorly-constrained binary evolution parameters related to the strength of post-core collapse remnant natal kicks and common envelope efficiency are adjusted to values currently unsupported -- but not excluded -- by the literature. We discuss observational implications that may constrain the existence of these putative progenitor systems.
Background: low-mass stars are the dominant product of the star formation process, and they trace star formation over the full range of environments, from isolated globules to clusters in the central molecular zone. In the past two decades, our understanding of the spatial distribution and properties of young low-mass stars and protostars has been revolutionized by sensitive space-based observations at X-ray and IR wavelengths. By surveying spatial scales from clusters to molecular clouds, these data provide robust measurements of key star formation properties. Goal: with their large numbers and their presence in diverse environments, censuses of low mass stars and protostars can be used to measure the dependence of star formation on environmental properties, such as the density and temperature of the natal gas, strengths of the magnetic and radiation fields, and the density of stars. Here we summarize how such censuses can answer three basic questions: i.) how is the star formation rate influenced by environment, ii.) does the IMF vary with environment, and iii.) how does the environment shape the formation of bound clusters? Answering these questions is an important step toward understanding star and cluster formation across the extreme range of environments found in the Universe. Requirements: sensitivity and angular resolution improvements will allow us to study the full range of environments found in the Milky Way. High spatial dynamic range (< 1arcsec to > 1degree scales) imaging with space-based telescopes at X-ray, mid-IR, and far-IR and ground-based facilities at near-IR and sub-mm wavelengths are needed to identify and characterize young stars.
66 - Miriam Garcia 2019
With both nebular- and stellar-derived abundances of $lesssim$ 1/10 Zsun and low foreground extinction, Sextans A is a prime candidate to replace the Small Magellanic Cloud as reservoir of metal-poor massive stars and reference to study the metal-poor Universe. We report the discovery of two early-O type stars in Sextans A, the earliest O-stars with metallicity < 1/7 Zsun known to date, and two additional O9 stars. Colour-excess estimates towards individual targets, enabled by spectral typing, manifest that internal reddening is neither uniform nor negligible. The four targets define a new region of star formation far from the optically-brightest centre of the galaxy and from its conspicuous HII shells, but not devoid of neutral hydrogen. In fact, we detect a spatial correlation between OB-stars and HI in Sextans A and other dIrrs that leads us to propose that the neutral phase may be fundamental to star formation in low-density environments. According to the existing evidence at least two of the targets formed in isolation, thus suggestive of an stochastic sampling of the initial mass function that would enable low-mass galaxies like Sextans A to form very massive stars. The discovery of these four stars provide spatially-resolved, spectroscopic confirmation of recent findings suggesting that dwarf galaxies can sustain star formation despite the low density of the gas phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا